مدل سازی تشکیل هیدرات در برخی مبردها با استفاده از معادله حالت CPA جهت تعیین پارامترهای کیهارا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه خلیج فارس بوشهر، دانشکده مهندسی گاز و پتروشیمی، گروه مهندسی شیمی

2 دانشگاه سمنان، دانشکده مهندسی شیمی، نفت و گاز

چکیده

در این تحقیق با استفاده از معادله حالت مکعبی به اضافه تجمعی (CPA) و مدل واندروالس- پلاتیو، شرایط تشکیل هیدرات برای مبردهای R-141b ،R-134b و 152aا-R مدل‌سازی شده است. پارامترهای کیهارا برای این مواد با استفاده از روش کمترین مجموع مربعات ضمنی با کمینه کردن اختلاف بین پتانسیل شیمیایی آب در فاز هیدرات و فاز مایع از طریق الگوریتم بهینه‌سازی ژنتیک به دست آورده شده است. در این مدل، پارامترهای گزارش شده توسط سلون برای حالت مرجع ساختار نوع I و II هیدرات به کار برده شده است. مقایسه مدل به کار رفته با نتایج حاصل با داده‌های آزمایشگاهی مطابقت بالایی را نشان داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Hydrate Formation Conditions for Some Refrigerants Using the CPA Equation of State in Order to Obtain the Kihara Potential Parameters

نویسندگان [English]

  • Amir Abbas Izadpanah 1
  • Fatemeh Nikbakht 1
  • Farshad Varaminyan 2
1 Department of Chemical Engineering, Faculty of Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
2 Faculty Chemical Engineering, Oil and Gas, Semnan University, Semnan, Iran
چکیده [English]

In this study, hydrate formation conditions for refrigerants R-134a, R-141b, and R-152a are simulated employing the cubic plus association equation of state (CPA) and van der Waals –Platteeuw model. Based on the experimental data for the hydrate formation of these refrigerants and the reference properties for structure I and II reported by Sloan, Kihara parameters for these refrigerants are estimated by an implicit optimization scheme through the minimization of the chemical potential difference of water in the hydrate and in the liquid phase. The minimization was performed by applying a genetic algorithm.
 

کلیدواژه‌ها [English]

  • Hydrate Formation
  • Refrigerant
  • Kihara Potential Function
  • Implicit Least Squares

[1]. Sloan E. D. Jr., Clathrate Hydrates of Natural Gases, New York: Marcel Dekker, 1998.

[2]. Tomlinson J. J., in Proceedings of the 17th IECEC Conference, pp. 2060–2064, 1982.

[3]. Knebel D. E., ASHRAE J. 1995; 37: 22–39.

[4]. Tran N., Kreider J. F., Brothers P., ASHRAE Trans. 1989; 95: 1106–1112.

[5]. Denkmann J. L., ASHRAE Trans. 1985; 91: 876–891.

[6]. Hensel E. C., Robinson N. L., Buntain J., Glover J. W., Birdsell B. D. and Sohn C. W., ASHRAE Trans, 97: pp. 1151–1160, 1991.

[7]. Douglas A. A., ASHRAE J. 1990; 32: 46–53.

[8]. Ternes M. P., in Proceedings of the DOE Physical and Chemical Energy Storage Annual Contractor’s Review Meeting, CONF-830974, 1983.

[9]. Tomlinson J. J., Geist G. A. and Olszewski M., in Proceedings of the 19th IECEC Conference, 1984; 1201–1206.

[10]. Liang D., Guo K., Wang R., and Fan S., Hydrate equilibrium data of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-dichloro-1-fluoroethane (HCFC-141b) and 1,1-difluoroethane (HFC-152a), Fluid Phase Equilibria 2001; 187–188: 61–70.

[11]. Holder G. D., Gorbin G. and Papadopoulos K. D., “Thermodynamic and Molecular Properties of Gas Hydrates from Mixtures Containing Methane, Argon, and Krypton”, Ind. Eng. Chem. Fundam, 19: pp. 282–286, 1980.

[12]. Li J., Liang D., Guo K., Wang R. and Fan S., “Formation and dissociation of HFC134a gas hydrate in nano-copper suspension”, Energy Conversion and Management, 47: pp. 201-210, 2006.

[13]. Eslamimanesh A., Mohammadi A. H. and Richon D., “Thermodynamic model for predicting phase equilibria of simple clathrate hydrates of refrigerants”, Chemical Engineering Science 66; pp. 5439 –5445, 2011.

[14]. Kontogeorgis G. M., Voutsas E. C., Yakoumis I. V., and Tassios D. P., “An Equation of State for Associating Fluids”, Ind. Eng. Chem. Res, 35: pp. 4310–4318, 1996.

[15]. Kontogeorgis G. M., Michelsen M. L., Folas G. K., Derawi S., von Solms N., and Stenby E. H., “Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 1. Pure compounds and self-associating systems”, Industrial & Engineering Chemistry Research, 45: pp. 4855-4868, 2006.

[16]. Kontogeorgis G. M., Michelsen M. L., Folas G. K., Derawi S., von Solms N., and Stenby E. H., “Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 2. Cross-associating and multicomponent systems”, Industrial & Engineering Chemistry Research, 45: 4869-4878, 2006.

[17]. Folas G. K., Derawi S. O., Michelsen M. L., Stenby E. H., and Kontogeorgis G. M., Recent applications of the cubic-plus-association (CPA) equation of state to industrially important systems, Fluid Phase Equilibria, pp. 228-229: 121-126, 2005.

[18]. Youssef Z., Barreau A., Mougin P., Jose J. and Mokb el I., “Measurements of hydrate dissociation temperature of methane, ethane, and CO2 in the absence of any aqueous phase and prediction with the cubic plus association equation of stat e”. Ind. Eng. Chem. Res., 48 (8), pp. 4045-4050, 2009.

[19]. Youssef Z., Barreau A., Mougin P., Jose J., Mokb el I., Measurements of hydrate dissociation temperature of gas mixtures in the absence of any aqueous phase and prediction with the cubic-plus-association equation of state. J. Chem. Eng. Data, 55 (8), 2809 e 2814, 2010.

[20]. Haghighi H., Chapoy A., Burgess R., Mazloum S., Toh idi B., “Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: experimental measurements and modelling using the CPA equation of state”, Fluid Phase Equilibria, 278, pp. 109-116, 2009.

[21]. Haghighi, H., Chapoy, A., Burgess, R., Mazloum, S., Tohidi, B., Experimental and thermodynamic modelling of systems containing water and ethylene glycol: application to flow assurance and gas processing. Fluid Phase Equilibria, 2009; 276, 24-30.

[22]. Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering

Science 1972; 27: 1197.

[23]. Wertheim M. S., “Fluids with highly directional attractive forces I. Statistical thermodynamics”, Journal of Statistical Physics, pp. 35: 19, 1984.

[24]. Wertheim M. S., “Fluids with highly directional attractive forces II. Thermodynamic perturbation theory and integral equations”, J. Statist. Phys., pp. 35: 35, 1984.

[25]. Wertheim M. S., “Fluids with highly directional attractive forces III. Multiple attraction sites”, J. Statist. Phys. pp.42: 459, 1986.

[26]. Wertheim M. S., “Fluids with highly directional attractive forces IV. Equilibrium polymerization”, J. Statist. Phys. pp. 42: 477, 1986.

[27]. Huang S. H., and Radosz M., Equation of state for small, large, polydisperse and associating molecules, Ind. Eng. Chem. Res. 29: 2284, 1990.

[28]. Michelsen M. L., and Hendriks, E. M., “Physical properties from association models”, Fluid Phase Equilibria, Vol. 180: pp. 165-174, 2001.

[29]. Kontogeorgis G. M., Yakoumis I. V., Meijer H., Hendriks E. M. and Moorwood T., Multicomponent phase equilibrium calculations for water – methanol – alkane mixtures, Fluid Phase Equilibria, pp. 158 – 160: 201, 1999.

[30]. van der Waals, J. H., Platteeuw, J. C., Clathrate solutions. Adv. Chem. Phys. 2, 1 e 57, 1959.

[31]. Folas G. K., Derawi S. O., Michelsen M. L., Stenby E. H. and Kontogeorgis G. M. “Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems” Fluid Phase Equilibria,Res. 44. pp. 3823:3833, 2005.

[32]. Sonntag R. E., Borgnakke C., Van Wylen. G. J., Fundamental of Thermodynamics, sixth edition. New York, 2003.

[33]. Clarke M. A., Bishnoi P. R., “Development of an implicit least squares optimisation scheme for the determination of Kihara potential parameters using gas hydrate equilibrium data”, Fluid Phase Equilibria, 211: 51–60, 2003.

[34]. Carroll D. L., CU Aerospace, South Wright Street Extended, Urbana, IL 61802, 4/2/2001, 2004.