استفاده از نانوکامپوزیت گرافنی مغناطیسی عامل‌دار شده با مایع یونی در گوگردزدایی

نوع مقاله: مقاله پژوهشی

نویسنده

گروه تجزیه و ارزیابی مواد، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

از آغاز انقلاب گرافن در سال 2004، این ماده توجه زیادی را به خود جلب کرده است و ویژگی‌های فیزیک و شیمیایی منحصر به فرد آن، امیدهای بسیاری برای استفاده از این ماده در زمینه‌های مختلف به وجود آورده است. همچنین نانوذرات مغناطیسی که به سادگی توسط یک آهن‌ربا از محیط جدا می‌شوند، راهکار جدیدی در حذف آلاینده‌ها به حساب می‌آیند. در این تحقیق، مزایای آهن گرافن با جداسازی آسان نانوذرات مغناطیسی ترکیب شده و پس از عامل‌دار شدن با مایع یونی، از نانوکامپوزیت مغناطیسی گرافنی حاصل به منظور گوگردزدایی از بنزین استفاده شد. ساختار نانو کامپوزیت تهیه شده با دستگاه‌های مختلف بررسی گردیده و عوامل مؤثر بر فرآیند گوگردزدایی بهینه شد. مطالعات سینتیکی و ترمودینامیکی به منظور بررسی مکانیسم حذف انجام گرفت. نتایج نشان داد که تحت شرایط بهینه، 58% تیوفن طی minا20 حذف می‌شود و با تکرار مراحل حذف تا چهار مرتبه می‌توان به گوگردزدایی عمیق رسید. بررسی داده‌های ترمودینامیکی جذب نشان داد که جذب سطحی از مدل لانگمویر تبعیت می‌کند. بنابراین، جذب بر تک لایه‌ای از سطح همگن نانوکامپوزیت صورت می‌گیرد. حداکثر ظرفیت جذب mgا 113 تیوفن به ازای grا1 نانوکامپوزیت محاسبه شد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Application of Magnetic Graphene-based Nanocomposite Functionalized with Ionic Liquid for the Sulfur Removal from Gasoline

نویسنده [English]

  • Tahereh Poursaberi
Analysis and Evaluation Of Materials Group, Research Institute of Petroleum Industry, (RIPI), Tehran, Iran
چکیده [English]

Since the start of the graphene revolution in 2004, it has captured increasing attention and has shown great promise in many applications arising from its unique physicochemical properties. On the other hand, magnetite nanoparticles which separate the materials based on magnetic properties have attracted great attention. Herein, the magnetic properties of the magnetite nanoparticles and the high adsorption capacity of graphene are combined to fabricate a new nanocomposite for the removal of sulfur compounds from gasoline. The synthesized nanocomposite was characterized by several techniques and effective parameters were optimized. The kinetic and thermodynamic data of the adsorption process were analyzed to clarify the mechanism of adsorption. The results showed that under optimal conditions, 58% of thiophen was removed in 20 min and deep desulfurization could be achieved during 4 cycles. The isothermal data conformed well to the Langmuir model, and thus a monolayer adsorption occurred on a homogeneous nanocomposite surface. The maximum sorption capacity of the nanocomposite for thiophene was 113 mg.g-1.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Graphene
  • Magnetic Nanoparticles
  • Ionic liquid
  • Desulfurization
[1]. U. S. Energy Information Administration. “The transition to ultra- low-sulfur diesel fuel: effects on prices and supply”, SR/OIAF/ 2001-01, pp. 13, 2001.

[2]. Babich I. V., and Moulijn J. A., “Science and technology of novel processes for deep desulfurization of oil refinery streams: A review”, Fuel, Vol. 82, pp. 607–631, 2003.

[3]. Zhang S. G., and Zhang Z. C., “Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature”, Green Chem. Vol. 4(4), pp. 376–379, 2002.

[4]. Zhang S. G., Zhang Q. L., and Zhang Z. C., “Extractive desulfurization and denitrogenation of fuels using ionic liquids”, Ind. Eng. Chem. Res. Vol. 43(2), pp. 614–622, 2004.

[5]. Su B., Zhang S., and Zhang C., “Structural elucidation of thiophene interaction with ionic liquids by multinuclear NMR spectroscopy”, J. Phys. Chem. B Vol. 108, pp. 19510–19517, 2004.

[6]. Carrado K. A., Kim J. H., Song C. S., Castagnola N., Marshall C. L., and Schwartz M. M., “HDS and deep HDS activity of CoMoS-mesostructured clay catalysts”, Catal. Today Vol. 116, pp. 478–484, 2006.

[7]. Ma X. L., Zhou A. N., and Song C. S., “A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption”, Catal. Today Vol. 123(1–4), pp. 276–284, 2007.

[8]. Huang C., Chen B., Zhang J., Liu Z., and Li Y., “Desulfurization of gasoline by extraction with new ionic liquids”, Energy Fuels Vol. 18, pp. 1862–1864, 2004.

[9] Zhang S., Zhang Q., and Zhang Z. C., “Extractive desulfurization and denitrogenation of fuels using ionic liquids”, Ind. Eng. Chem. Res. Vol. 43, pp. 614–622, 2004.

[10]. Zhao D., Wang J., and Zhou E., “Oxidative desulfurization of diesel fuel using a Bronsted acid room temperature ionic liquid in the presence of H2O2, Green Chem”, Vol. 9, pp.1219–1222, 2007.

[11]. Planeta J., Karasek P., and Roth M., “Distribution of sulfur-containing aromatics between [hmim][Tf 2 N] and supercritical for deep desulfurization of oil refinery streams by extraction with ionic liquids”, Green Chem. Vol. 8, pp. 70–77, 2006.

[12]. Nie Y., Li C. X., and Wang Z. H., “Extractive desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ionic liquids”, Ind. Eng. Chem. Res. Vol. 46, pp. 5108–5112, 2007.

[13] Alonso L., Arce A., Rodrı´guez O., Francisco M., and Soto A., “Gasoline desulfurization using extraction with [C8mim][BF4] ionic liquid”, AIChE J. Vol. 53, pp. 3108–3115, 2007.

[14]. Ranu B. C., and Jana R., “Catalysis by ionic liquid. a green protocol for the stereoselective debromination of vicinal-dibromides by [pmIm]BF4 under microwave irradiation”, J. Org. Chem. Vol. 70, pp. 8621–8624, 2005.

[15]. Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., and Muller R. N., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem. Rev., Vol. 108, pp. 2064, 2008.

[16]. Yan J., Wei T., Qiao W., Shao B., Zhao Q., Zhang L. and Fan Z., “Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors”, Electrochim. Acta , Vol. 55, pp. 6973–6978, 2010.

[17]. Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R. and Ruoff R. S., “Graphene and graphene oxide: synthesis”, properties, and applications, Adv. Mater. , Vol. 22, pp. 3906–3924, 2010.

[18]. Gong J. L., Wang B., Zeng G. M., Yang C. P., Niu C. G., Niu Q.Y., Zhou W. J. and Liang Y., “Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent”, J. Hazard. Mater. , Vol. 164, pp. 1517–1522, 2009.

[19]. Chen L., Xu Z., Dai H., Zhang S., “Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route”, J. Alloys Compd. , Vol. 497, pp. 221–227, 2010.

[20]. Kaminski M. D., Nu˜nez L., “Extractant-coated magnetic particles for cobalt and nickel recovery from acidic solution”, J. Magn. Magn. Mater. , Vol. 194, pp. 31-36, 1999.

[21]. Chen C., Hu J., Shao D., Li J. and Wang X., “Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II)”, J. Hazard. Mater. , Vol. 164, pp. 923–928, 2009.

[22]. Luo Y. B., Shi Z. G., Gao Q. and Feng Y. Q., “Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples”, J. Chromatogr., A, Vol. 1218, pp. 1353–1358, 2011.

[23]. Pham T. A., Kumar N. A. and Jeong Y. T., “Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles”, Synth. Met., Vol. 160, pp. 2028–2036, 2010.

[24]. Zhang K., Dwivedi V., Chi C. Y. and Wu J. S., “Graphene oxide/ferric hydroxide composites for efficient removal of As in drinking water”, J. Hazard. Mater., 2010, 182, 162–168.

[25]. Wu Q. H., Zhao G. Y., Feng C., C. Wang and Z. Wang, “Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples”, J. Chromatogr., A, Vol. 1218, pp. 7936–7942, 2011.

[26]. Zhao G. Y., Song S. J., Wang C., Wu Q. H. and Wang Z., “Preparation and evaluation of graphene-coated solid-phase microextraction fiber”, Anal. Chim. Acta, Vol. 678, pp. 44-49, 2010.

 [27]. Chandra V., Park J., Chun Y., Lee J. W., Hwang I. C. and Kim K. S., “Water Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal”, ACS Nano, Vol. 4, pp. 3979-3986, 2010.

[28]. Li N. W., Zheng M. B., Chang X. F., Ji G. B., Lu H. L., Xue L. P., Pan L. J. and Cao J. M., “Preparation of magnetic CoFe2O4 functionalized graphene sheets via a facile hydrothermal method and their adsorption properties”, J. Solid State Chem., Vol. 184, pp. 953–958, 2011.

[29]. Hummers W. S., and Offeman R. E., “Preparation of graphitic oxide”, J. Am. Chem. Soc. , Vol. 80, pp. 1339-1339, 1958.

[30]. Huamin Q. Chuannan L. Min S., Fuguang L., Lulu F. and Xiangjun L., “A chemiluminescence array sensor based on graphene-magnetite-molecularly imprinted polymers for determination of benzenediol isomers”, Analytica Chimica Acta, Vol. 744, pp. 75-81, 2012.

[31]. Zhang Y. J., Shen Y. F., Yuan J. H., Han D. X., Wang Z. J., Zhang Q. X. and Niu L., “Design and synthesis of multifunctional materials based on an ionic-liquid backbone”, Angew. Chem. Int. Ed.Vol. 45, pp. 5867-5870, 2006.

[32]. Huamin Q., Chuannan L., Min S., Fuguang L., Lulu F. and Xiangjun L., “A chemiluminescence array sensor based on graphene-magnetite-molecularly imprinted polymers for determination of benzenediol isomers”, Analytica Chimica Acta, Vol. 744, pp. 75- 81, 2012.

[33]. Wang Z., Latonen R., Kvarnström C., Ivaska A. and Niu L., “Preparation of multi-walled carbon nanotube/amino- terminated ionic liquid arrays and their electrocatalysis towards oxygen reduction”, Materials, Vol. 3, pp. 672-681, 2010.

[34]. Langmuir I., “The adsorption of gases on plane surfaces of glass”, mica and platinum, J. Am. Chem. Soc. , Vol. 40, pp. 1361-1403, 1918.

[35]. Freundlich H. M. F., “Over the adsorption in solution”, J. Phys. Chem., Vol. 57, pp. 385-471, 1906.

[36]. Zhang K., Zhang L. L., Zhao X. S. and Wu J. S., “Graphene/polyaniline nanofibers composites as supercapacitor electrodes”, Chem.Mater. , Vol. 22, pp. 1392-1401, 2010.

[37]. Yardim M. F., Budinova T., Ekinci E., Petrov N., Razvigorova M. and Minkova V., “Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural”, Chemosphere, Vol. 52, pp. 835-841, 2003.

[38]. Seki Y. and Yurdakoc K., “Adsorption of promethazine hydrochloride with KSF montmorillonite”, Adsorption, Vol. 12, pp. 89-100, 2006.

[39]. Yu Y., Y. Zhuang Y. and Wang Z. H., “Adsorption of water-soluble dye onto functionalized resin”, J. Colloid Interface Sci., Vol. 242, pp. 288–293, 2001.

[40]. Nassar N., “Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents”, J. of Haz. Mat., Vol. 184, pp. 538–546, 2010.

[41]. Gutowski K. E., Holbrey J. D., Rogers R. D., and Dixon D. A., “Prediction of the formation and stabilities of energetic salts and ionic liquids based on ab initio electronic structure calculations”, J. Chem. Phys. B, Vol. 109, pp. 23196–23208, 2005.

[42]. Rogers R. D., and Seddon K. R., “Ionic liquids-solvents of the future? Science”, Vol. 302, pp. 792–793, 2003.

[43]. Ahmad S. A, Tanwar R. S, Gupta R. K, Khanna A., “Interaction parameters for multi-component aromatic extraction with sulfolane”, Fluid Phase Equilibria,Vol. 220, pp.189-198, 2004.

[44]. Khanna A., Singh M. K, Bajpai S. and Sanpui D., “Estimation of LLE for PIONA families in SULFOLANE and its validation”, Fluid Phase Equilibria,Vol. 215, pp. 207-220, 2004.

[45]. Adzamic T., Sertic-Bionda K. and Zoretic Z., “Desulfurization of FCC gasoline by extraction with sulfolane and furfural”, Vol. 60, pp. 485-490, 2009.