مدل‌سازی ضخامت محدوده پایداری هیدرات گازی و تخمین اولیه حجم گاز در رسوبات دریای عمان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نفت، واحد علوم وتحقیقات تهران، دانشگاه آزاد اسلامی، تهران

2 پژوهشکده ازدیاد برداشت از مخازن نفت و گاز، شرکت ملی نفت، تهران

3 پژوهشکده علوم زمین، پژوهشگاه صنعت نفت، تهران

4 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران

چکیده

شواهد مطالعات لرزه‌ای در دریای عمان با استفاده از نشان‌گر شبیه‌ساز بستر دریا و نشان‌گرهای لرزه‌ای لکه مسطح و لکه روشن نشان می‌دهد که هیدرات گازی در رسوباتی که عمق آنها بیشتر از m 1150 باشد و در محدوده‌ای بالغ بر km2 27000 مشاهده شده است. در این مقاله با مدل‌سازی ضخامت محدوده پایداری هیدرات گازی و در نظر گرفتن خصوصیات میانگین زمین‌شناسی، تخمین مناسبی از حجم هیدرات گازی ارائه ‌می‌گردد. برای این منظور مدل میلکو و ساسن مورد استفاده قرار گرفت. با توجه به عدم قطعیت در ترکیب گاز، با در نظر گرفتن سه نوع ترکیب متفاوت گازی، حداقل عمق آب که هیدرات گازی می‌تواند در دریای عمان پایدار باشد، بین 430 تا m 872 متغیر می‌باشد. همچنین ضخامت متوسط محدوده پایداری هیدرات گازی 217 تا m 446  زیربستر دریا محاسبه گردید. بر این اساس حجم گاز هیدراته در دریای عمان در محدوده 11 تا 21 تریلیون متر مکعب در شرایط استاندارد دما و فشار پیش‌بینی می‌شود که با مقدار گاز میدان عظیم پارس جنوبی قابل مقایسه می‌باشد. بنابراین، وجود این منبع انرژی در دریای عمان ضرورت انجام مطالعات ویژه جهت تولید و ارزیابی اقتصادی را بیش از پیش مورد تاکید قرار می‌دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Thickness of the Gas Hydrate Stability Zone and a Preliminary Estimation of Gas Hydrate Resource in the Oman Sea

نویسندگان [English]

  • Erfan Afazel 1
  • Shahab Gerami 2
  • Naser Keshavarz Faraj khah 3
  • Seyyed Amir Badakhshan 4
1 Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University,
2 NIOC-IOR Research Institute, Tehran
3 Faculty of Geoscience, Research Institute of Petroleum Industry, Tehran
4 Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran
چکیده [English]

According to a recent seismic survey in the Oman Sea, hydrate bearing layers were detected through observation of significant bottom simulating reflector, flat spot, and bright spot attributes in the area of 27,000 km2. This paper estimates the minimum water depth required for gas hydrate formation in the Oman Sea. Also, the thickness of the gas hydrate stability zone (GHSZ) is modeled on the basis of the Oman Sea basin properties. This leads to the first estimation of the volume of hydrate-bound gas sequestered in the Oman Sea. Using Milkov and Sassen’s model, the thickness of the GHSZ is calculated. Considering three different gas compositions, the minimum water depth stability calculations suggest that gas hydrate may crystallize as shallow as ~430 m to a water depth of ~872 m and the average thickness of the GHSZ was estimated to be ~217– 446 m in the Oman Sea. The estimated volume of hydrate-bound gas is 11–21×1012 m3 at standard temperature and pressure (STP) depending on the source gas composition, which is comparable to initial gas in place of South Pars gas field. Therefore, gas hydrate accumulation in the Oman Sea and free gas beneath could be a future energy source from which natural gas could be recovered profitably in the near future
 

کلیدواژه‌ها [English]

  • Gas Hydrate
  • Oman Sea
  • Thickness of Gas Hydrate Stability Zone
  • Energy Resource
  • Seismic Indicator

[1]. افاضلی، ع.، بررسی تشکیل هیدرات گازی در صنعت نفت، پایان نامه کارشناسی، دانشگاه آزاد اسلامی، ایران، 1388.

[2]. Sloan, E. D., Clathrate hydrates of natural gases, 3rd ed., CRC Press, 2008.

[3]. Makogon Y. F., “Natural gas hydrates _ a promising source of energy, Natural gas science and engineering”, Vol. 2, No. 1, pp. 45-59, 2010.

[4]. Soloviev V., Global estimation of gas content in submarine gas hydrate accumulations, VI International Conference on Gas in Marine sediments, St. Petersburg, Russia, 2000.

[5]. Dobrynin V. M., Korotajev Y. P., Plyuschev, D. V., “Gas hydrates _ a possible energy source”, Long-Term Energy Resources. Pitman, pp. 727– 729, 1981.

[6]. Kvenvolden K. A., Potential effects of gas hydrate on human welfare, National Academy of Sciences colloquium, Irvine, USA, 1999.

[7]. Kvenvolden, K.A., “Methane hydrate in the global organic carbon cycle”, Terra Nova, Vol.14, No.5, pp.302–306, 2002.

[8]. Milkov A. V., “Global estimates of hydrate-bound gas in marine sediments: how much is really out there?, Earth Science Reviews”, Vol. 66, No. 3-4, pp. 183-197, 2004.

[9]. White R. S., “Gas hydrate layers trapping free gas in the Gulf of Oman”, Earth and Planetary Science Letters, Vol. 42, No. 1, pp. 114–120, 1978.

[10]. White R. S. and Klitgord K. D., “Sediment deformation and plate tectonics in the Gulf of Oman”, Earth and Planetary Science Letters, Vol. 32, No. 2, pp. 199–209, 1976.

[11]. Kvenvolden K. A., Lorenson T. D., Global occurrence of gas hydrate, 11th

International Offshore and Polar Engineering Conference, Stavanger, Norway

, 2001.

[12]. جوانبختی، ا. ح.، حسینی شعار، ب.، عربانی، م.، جواهریان، ع.، بررسی هیدرات‌های گازی دریای عمان با استفاده از داده‌های لرز ه‌ای، اولین همایش ملی هیدرات گازی، دانشگاه صنعتی شریف، ایران، 1390.

[13]. حسینی شعار، ب.، شناسایی محدوده‌های رسوبات هیدرات گازی در دریای عمان و بررسی لرزه‌ای آنها، پایان نامه کارشناسی ارشد، دانشگاه امیرکبیر، ایران،1387.

[14]. Jackson B. A., “Seismic evidence for gas hydrates in the north Makassar basin, Indonesia”, Petroleum Geo Science, Vol. 4, No. 3, 2004.

[15]. Sain K., Seismic detection and quantification of gas hydrates application to Indian continental margin, 7th International Conference on gas Hydrates, Edinburg, Scotland, UK, 2011.

[16]. Milkov A. V. and Sassen R., “Estimate of gas hydrate resource-northwestern Gulf of Mexico”, Marine Geology, Vol. 179, N0. 1, pp. 71-83, 2001.

[17]. Matthias T. and Godfrey J. S., Regional oceanography: an introduction, 2nd ed., Daya Publishing House, 2003.

[18]. Han W. P., and McCreary J., “Modeling salinity distributions in the Indian Ocean”, Geophysical Research, Vol.106, No.C1, pp. 859-877, 2001.

[19]. Mokhtari M. and Farahbod A. M., Tsunami occurrence in the Makran region, Tsunami Seminar, Tehran, Iran, 2005.

[20]. Klauda J. B. and Sandler S. I., “Global distribution of methane hydrate in ocean sediment”, Energy Fuels, Vol. 19, No. 2, pp. 459– 470, 2005.

[21]. Max M. D., Johnson A. H. and Dillon W. P., Economic geology of natural gas hydrate,1st ed., Springer publishing, 2006.

[22]. Sassen R. and Mac Donald I. R., “Thermogenic gas hydrates, Gulf of Mexico continental slope”, Geochemistry, Vol. 23, No. 2, pp. 1029-1032, 1994.

[23]. Milkov A. V., Sassen R., Novikova I. and Mikhilov E., “Gas hydrates at minimum stability water depths in the Gulf of Mexico: significance to geo hazard assessment”, Gulf Coast Association of Geological Societies Transactions, Vol. 50, pp. 217-224, 2000.

[24]. Holder G. D., Malone R. D. and Lowson W. F., “Effects of gas composition and geothermal properties on the thickness and depth of natural-gas-hydrate zones”, Petroleum Technology, vol.39, No. 9, pp. 1147-1152, 1987.

[25]. Vohat P., Sain K. and Thakur N. K., “Heat flow and geothermal gradient from a bottom simulating reflector: A case study”, Current Science, Vol. 85, pp. 1263-1265, 2003.

[26]. Ameripour S. and Barrufet M., “Improved correlations predict hydrate formation pressures or temperatures for systems with or without inhibitors”, Canadian Petroleum Technology, Vol. 48, No. 5, pp. 45-50, 2009.

[27]. Milkov A. V. and Sassen R., “Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope”, Marine Geology, Vol. 20, No. 2, pp. 111-128, 2003.

[28]. Holder G. D., Malone R. D. and Lowson W. F., “Effects of gas composition and geothermal properties on the thickness and depth of natural-gas-hydrate zones”, Petroleum Technology, Vol. 39, No. 9, pp. 1147-1152, 1987.

[29]. Wang S., Yan W. and Song H., “Mapping the thickness of gas hydrate stability zone in south China sea”, Terr. Atmos. Ocean. Sci., Vol.17, No. 4, pp. 815-828, 2006.