الگوریتم تبرید شبیه‌سازی شده‌ انطباق‌پذیر و سریع برای مدل‌سازی شبکه شکاف‌ها در مخازن شکاف‌دار طبیعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو

2 دانشیار دانشکده مهندسی نفت دانشگاه صنعتی شریف

چکیده

دانستن جهت و توزیع فضایی شکاف‌ها در مخازن شکاف‌دار برای پیش‌بینی جریان سیالات در این نوع مخازن امری ضروری است. در میان روش‌های موجود برای مدل‌سازی توزیع شکاف‌ها، روش بهینه‌سازی تبرید شبیه‌سازی شده به دلیل توانایی آن در حل مسائل بزرگ و نیز یافتن مقادیر کمینه مطلق از اهمیت خاصی برخوردار است. در این مطالعه، هدف ارائه یک روش تبرید شبیه‌سازی شده انطباق‌پذیر و سریع، برای مدل‌سازی شکاف‌ها می‌باشد. این روش با ارائه‌ یک مدل برای تخمین مقدار اولیه پارامتر شبه دما، پیشنهاد یک مدل انطباق‌پذیر برای طول زنجیر مارکوف و در نهایت پیشنهاد یک مدل انطباق‌پذیر و سریع برای کاهش مقدار پارامتر شبه دما، باعث افزایش سرعت محاسبات الگوریتم تبرید شبیه‌سازی شده می‌شود. همچنین در این مطالعه، یک تابع هدف خاص مورد بررسی قرار داده شده و این نکته نشان داده می‌شود که چرا الگوی شکاف‌های تولید شده با این روش منجر به دو دسته شکاف عمود برهم می‌شود. در ادامه تابع هدف بهبود داده شده که بتواند الگوی شکاف‌های مزدوج با هر زاویه دلخواهی را تولید کند.

کلیدواژه‌ها


عنوان مقاله [English]

An Adaptive and Fast Simulated Annealing Algorithm for Fracture Network Modeling in Naturally Fractured Reservoirs

نویسندگان [English]

  • Sajad Gholinezhad 1
  • Mohsen Masihi 2
چکیده [English]

Knowing the orientation and spatial configuration of fractures in naturally fractured reservoirs is necessary for the prediction of the flow in those reservoirs. Among the fracture network modeling methods, simulated annealing algorithm (SA), due to its capability in solving large problems and finding a global optimum, is well-known. This paper proposes a new adaptive and fast simulated annealing algorithm for modeling naturally fractured reservoirs. This algorithm improves computation performance without degrading solution quality by incorporating a method for the estimation of the initial value of the temperature like parameter, T0, using an adaptive Markov chain length, NT (inner iterations) and suggesting a new fast and adaptive annealing schedule. Moreover, we discuss some aspects of a special objective function and proof this issue that why the minimum of this objective function occurs when the final configuration is a two orthogonal fracture sets with the same number of fractures in each set. Finally, we extend this objective function and modify it to develop an objective function that could generate conjugate fractures with any arbitrary intersection angle.

کلیدواژه‌ها [English]

  • Spatial Configuration
  • Adaptive Simulated Annealing
  • conjugate fractures

[1]. Gonzalez R. C. and Perez V. S., “Two procedures for stochastic simulation of vuggy formations”, SPE 69663, Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, pp. 25–28 March 2001.##

[2]. Masihi M. and Nurfaza P. R., “Fast estimation of performance parameters in fractured reservoirs using percolation theory”, SPE 94186, Europec/EAGE Annual Conference and Exhibition, Madrid, Spain, pp. 13-16 June 2005.##

[3]. Tran N. H. and Tran K., “Combination of fuzzy ranking and simulated annealing to improve discrete fracture inversion Elsevier”, Mathematical and Computer Modeling, Vol. 45, pp. 1010–1020, 2007.##

[4]. Tran N. H., Chen Z. and Rahman S. S., “Object-based global optimization in modeling discrete-fracture” Network Map: A Case Study SPE 84456, Annual Technical Conference and Exhibition, Denver, Colorado, U.S.A., 5-8 October 2003.##

[5]. Tran N. H., Chen Z. and Rahman S. S., Practical application of hybrid modelling to naturally fractured reservoirs, Journal of Petroleum Science & Technology 2006.##

[6]. Tran N. H., Chen Z. and Rahman S. S., “Characterizing and Modeling of Naturally Fractured Reservoirs With the use of Object-Based Global Optimization”, Petroleum Society’s Canadian International Petroleum Conference, Calgary, Alberta, Canada, pp. 10 – 12 June 2003.##

[7]. Dudek G., “Adaptive simulated annealing schedule to the unit commitment problem”, Elsevier, Electric Power Systems Research, Vol. 80, pp. 465–472, 2010.##

[8]. Masihi M. and King P., “Connectivity of spatially correlated fractures: simulation and field studies” paper SPE 107132 presented at the SPE Europe/EAGE Annual Conference and Exhibition, London, United Kingdom, pp. 11-14 June 2007.##

[9]. Masihi M., Sobhani M., Al-Ajmi A. M., Al-Wahaibi Y. M. and Al-Wahaibi T. K., “A physically-based three dimensional fracture network modeling technique Scientia Iranica”, Vol. 19, No. 3, pp. 594–604, 2012.##

[10]. Shekhar R., Richard L. and Gibson J., Correlated fracture network modeling using simulated annealing, SEG Las Vegas Annual Meeting 2008.##

[11]. Ouenesan A., Srinivasa B., Bunge P. H. and Travis B. J., “Application of simulated annealing and other global optimization methods to reservoir description: myths and realities”, SPE 28415, 69th Annual Technical Conference and Exhibition, New Orfeans, LA, U.S.A., pp. 25-28 September 1994.##

[12]. Vasan A. and Raju K. S., “Comparative analysis of simulated annealing”, Simulated Quenching and Genetic Algorithms for optimal reservoir operation Elsevier, Applied Soft Computing, Vol. 9, pp. 274–281, 2009.##

[13]. Datta-Guptta A., Vasco D. W., Long J. C. S., Donfro P. S. and Rizer W. D., Detailed characterization of a fractured limestone formation by use of stochastic inverse approaches, SPE Formation Evaluation, September 1995.##

[14]. Wang Z. G., Wong Y. S. and Rahman M., “Development of a parallel optimization method based on genetic simulated annealing algorithm”, Elsevier, Parallel Computing, Vol. 31, pp. 839–857, 2005.##

15. Ouahed A. K., Tiab D., Mazouzi A. and Sarfraz A. J., Application of Artificial Intelligence to Characterize Naturally Fractured Reservoirs, SPE 84870, International Improved Oil Recovery Conference in Asia Pacific, Kuala  Lumpur, Malaysia, 20-21 Oct. 2003.##

[16]. Darabi H., Kavousi A., Moraveji M. and Masihi M., “3D fracture modeling in Parsi oil field using artificial intelligence tools”, Journal of Petroleum Science and Engineering, Vol. 71, pp. 67–76, 2010.##

[17]. Misevicius A., “A Modified simulated annealing algorithm for the quadratic assignment problem informatica”, Vol. 14, No. 4, pp. 497–514, 2003.##

[18]. Fabian V., “Simulated annealing simulated computers & mathematics with applications”, Vol. 33, No. 1/2, pp. 81-94, 1997.##

[19]. Durand M. D. and White S. R., “Trading accuracy for speed in parallel simulated annealing with simultaneous moves”, Elsevier Parallel Computing, Vol. 26, pp. 135–150, 2000.##

[20]. Scott L. R. and Harmonosky C. M., “An improved simulated annealing simulation optimization method for discrete parameter stochastic systems Elsevier”, Computers & Operations Research, Vol. 32, pp. 343–358, 2005.##

[21]. Ingber L., “Simulated annealing: practice versus theory elsevier, Mathematical and Computer Modelling”, Vol. 18, No. 11, pp. 29-57, 1993.##

[22]. Lee D. Y. and Wexler A. S., “Simulated annealing implementation with shorter Markov chain length to reduce computational burden and its application to the analysis of pulmonary airway architecture Elsevier”, Computers in Biology and Medicine, Vol. 41, 707–715, 2011.##

[23]. Corana A., Marchesi M., Martini C. and Ridella S., “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm ACM Transactions on Mathematical Software”, Vol. 13, No. 3, pp. 262-280, September 1987.##

[24]. Chen S. and Luk B. L., “Adaptive simulated annealing for optimization in signal processing applications Elsevier”, Signal Processing Vol. 79, pp. 117-128, 1999.##