بررسی رفتار بازدارندگی خوردگی ترپلیمر اکریلیکی پایه آبی و سازگار با محیط زیست بر روی فولاد SAE1018 در محیط نفتی در شرایط استاتیکی و دینامیکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه مواد و پلیمر، دانشکده فنی مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

 در این مقاله رفتار بازدارندگی خوردگی ترپلیمر متیل متاکریلات، بوتیل اکریلات، اکریلیک اسید بر روی فولاد SAE1018 در محیط نفتی (مطابق با استاندارد NACE) دارای ترکیبی از،H2S ،CO2 و اCH3COOH در محلول 5/3% وزنی کلرید سدیم بررسی شده است. تکنیک‌های الکتروشیمیایی پلاریزاسیون، طیف نگاری امپدانس و میکروسکوپ نوری جهت بررسی رفتار خوردگی و مکانیزم بازدارندگی در غلظت‌های گوناگون بازدارنده در شرایط استاتیکی و دینامیکی به‌کار گرفته شد. نتایج نشان می‌دهند که جذب بازدارنده روی سطح و در نتیجه مسدود کردن نقاط آندی و تقویت لایه‌های الکتریکی سطح عامل‌های کاهش‌دهنده سرعت خوردگی در شرایط استاتیکی و دینامیکی در حضور بازدارنده هستند. اعمال چرخش الکترود کاری باعث افزایش بازده بازدارندگی در غلظت بهینه در مقایسه با حالت استاتیکی شده است، به‌طوری‌که بازده در تمامی سرعت‌های چرخش از حالت استاتیکی بالاتر است. علت این افزایش بازدارندگی، تسهیل در رسیدن بازدارنده به سطح می‌باشد. لازم به ذکر است که مطالعات متالوگرافی در شرایط مختلف خوردگی نتایج مربوط به آزمون‌های الکتروشیمیایی مبنی بر کاهش نرخ خوردگی در حضور بازدارنده را تایید می‌کند. بررسی ساختار مولکولی توسط روش تئوری اساسی چگالی، نشان داد که اتم‌های اکسیژن موجود در ساختار مونومرهای این بازدارنده نقاط فعال و مناسب جهت جذب روی سطح هستند. در نهایت محاسبات ترمودینامیکی نیز نشان دادند که بازدارنده حاضر از ایزوترم جذب لانگمایر پیروی کرده و جذب بازدارنده روی سطح مخلوطی از شیمیایی و فیزیکی می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Corrosion Inhibition Behavior of Acrylic Terpolymers on SAE1018 Steel in Petroleum Solutions

نویسندگان [English]

  • Mojtaba Vakili Azghandi 1
  • Ali Davoodi 2
  • Gholam Ali Farzi 2
1 Materials and Polymers Engineering Department, Hakim Sabzevari University, Sabzevar, Iran
2 Materials and Metallurgical Engineering Department, Ferdowsi University of Mashhad, Iran
چکیده [English]

In this work, the corrosion inhibition performance of an environment friendly water-base acrylic terpolymer (methyl methacrylate/butyl acrylate/acrylic acid) on SAE 1018 steel in NACE standard solution containing CO2, H2S, CH3COOH, and 3.5 wt.% NaCl was investigated. Potentiodynamic polarization, electrochemical impedance spectroscopy, and optical microscopy were employed to investigate the corrosion behavior in the absence and the presence of various inhibitor concentrations in static and dynamic conditions using rotating disk electrode (RDE). The results show that blocking available anodic sites and reinforcing of the surface dielectric layers were the reasons for decreasing corrosion rate in static and dynamic conditions. The hydrodynamic condition has a positive effect on inhibitor efficiency in a way that whole efficiency values in hydrodynamic conditions are higher in comparison with the stagnant condition at an optimum concentration (0.8 mmol/l). The reason is attributed to the fact that by increasing the rotation speed, the inhibitor transfer from bulk solution to surface is enhanced. Also, it should be noted that optical microscopy examinations confirm all the results obtained by electrochemical methods. In addition, density functional theory (DFT) study shows that the oxygen atoms in monomers of the present terpolymer are suitable active sites for the adsorption of this inhibitor onto the surface. Finally, thermodynamic calculations also showed that the present inhibitor obeyed Langmuir adsorption isotherm and the absorbance on the surface is both physically and chemically.
 

کلیدواژه‌ها [English]

  • SAE 1018 Steel
  • Polymeric Corrosion Inhibitors
  • Polarization
  • EIS
  • Petroleum Solution
[1]. Altoé P., Pimenta G., Moulin C. F., Díaz S. L., and Mattos O. R., “Evaluation of oilfield corrosion inhibitors in CO2 containing media, A kinetic study,” Electrochim Acta., Vol. 41, pp. 1165-1172, 1996.##

[2]. Cabrera -Sierra R., Garcı́a I., Sosa E., Oropeza T., and González I., “Electrochemical behavior of carbon steel in alkaline sour environments measured by electrochemical impedance spectroscopy,” Electrochim Acta.,Vol. 46, pp. 487-497, 2000.##

[3]. Roberge P. R. and Sastri V. S., “Laboratory and field evaluation of organic corrosion inhibitors in sour media,” Corros. Sci., Vol. 35, pp. 1503-1513, 1993.##

[4]. ASTM D 4810 (latest revision), “Standard test Method for hydrogen sulfide in natural gas using length-of-stain detector tubes (west conshohocken, PA: ASTM),” 1980.##

[5]. “ASTM D 3227 (latest revision), Standard test method for (thiol mercaptan) sulfur in gasoline, kerosene, aviation turbine, and distillate fuels (potentiometric method) (west conshohocken, PA: ASTM),” 1980.##

[6]. Singer M., Brown B., Camacho A., and Nesic S., “Combined effect of CO2, H2S and acetic acid on bottom of the line corrosion,” Nace Corrosion International Conferance, Houston, 7661, 2007.##

[7]. Bommersbach P., Alemany-Dumont C., Millet J. P., and Normand B., “Hydrodynamic effect on the behaviour of a corrosion inhibitor film: Characterization by electrochemical impedance spectroscopy,” Electrochim Acta., Vol. 51, pp. 4011-4018, 2006.##

[8]. Tian B. R. and Cheng Y. F., “Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry, I: Effects of hydrodynamic condition,” Corros. Sci., Vol. 50, pp. 773-779, 2008.##

[9]. Hamdy H. H., “Effect of chloride ions on the corrosion behaviour of steel in 0.1 M citrate,” Electrochim Acta., Vol. 51, pp. 526-535, 2005.##

[10]. Ashassi-Sorkhabi H. and Asghari E., “Influence of flow on the corrosion inhibition of St52-3 type steel by potassium hydrogen-phosphate,” Corros. Sci., Vol. 51, pp. 1828-1835, 2009.##

[11]. Jiang X., Zheng Y. G., and Ke W., “Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution,” Corros. Sci., Vol. 47, pp. 2636-2658, 2005.##

[12]. Elizabete L., Claudia M., Luciana S., and Yure Q., “Polymer science applied to petroleum production,” Pure Appl. Chem., Vol. 81, pp. 473-494, 2009.##

[13]. Grchev T., Cvetkovska M., and Schultze J. W., “The electrochemical testing of polyacrylic acid and its derivatives as inhibitors of corrosion,” Corros. Sci., Vol. 32, pp. 103-112, 1991.##

[14]. Umoren S. A., “Poly vinylpyrollidone and polyacrylamide as corrosion inhibitors for mild steel in acidic mediu,” Pigm. Resin. Technol., Vol. 15, pp. 277-286, 2008.##

[15]. El-Sayed A., “A study of the inhibiting action of some polymers on the corrosion of iron in acidic media,” corros prevent. contr., Vol. 43, pp. 27-34, 1996.##

[16]. Boris M. M., Alla Y. F., and Margarita A. K., “Effectiveness of corrosion inhibitors for the petroleum industry under various flow conditions”, NACE corrosion International Conferance, Houston, 9573, 2009.##

[17]. “Standard practice control of internal corrosion in steel pipelines and piping systems,” Control of Internal Corrosion in Steel Pipelines and Piping Systems, Nace international, Houston, 2006.##

[18]. McCafferty E., “Validation of corrosion rates measured by the Tafel extrapolation method,” Corros. Sci., Vol. 47, pp. 3202-3215, 1994.##

[19]. Qu Q., Li L., Bai W., Jiang S., and Ding Z., “Sodium tungstate as a corrosion inhibitor of cold rolled steel in peracetic acid solution,” Corros. Sci., Vol. 51, pp. 2423-2428, 2009.##

[20]. Hirschorn B., Orazem M. E., Tribollet B., Vivier V., and Frateur I., “Determination of effective capacitance and film thickness from constant-phase-element parameters,” Electrochim Acta., Vol. 55, pp. 6218-6227, 2010.##

[21]. Noor E. A., “Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al-Cu alloy in hydrochloric acid,” Mater Chem. Phys., Vol. 114, pp. 533-541, 2009.##

[22]. Ashassi-Sorkhabi H. and Nabavi-Amri S. A., “Polarization and impedance methods in corrosion inhibition study of carbon steel by amines in petroleumwater mixtures, Electrochim Acta,” Vol. 47, pp. 2239-2244, 2002.##

[23]. McCafferty E. and Hackerman N., “Double Layer Capacitance of Iron and Corrosion Inhibition with Polymethylene Diamines,” elec soc., Vol. 119, pp. 146-154, 1972.##

[24]. Keddam M., Rosa Mottos O., and Takenouti H., “Reaction model for iron dissolution studied by electrode impedance,” elec. soc.,Vol. 128, pp. 257-266, 1981.##

[25]. Lorenz W. J. and Mansfeld F., “Determination of corrosion rates by electrochemical DC and AC methods,” Corros. Sci., Vol. 21, pp. 647-672, 1981.##

[26]. Hamdy H. H., “Perchlorate and oxygen reduction during Zn corrosion in a neutral medium,” Electrochim Acta., Vol. 51, pp. 5966-5972, 2006.##

[27]. Singh A. K. and Quraishi M. A., “Effect of Cefazolin on the corrosion of mild steel in HCl solution,” Corros. Sci., Vol. 52, pp. 152-160, 2010.##

[28]. Bentiss F., Lebrini M., and Lagrenée M., “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system,” Corros. Sci., Vol. 47, pp. 2915-2931, 2005.##

[29]. Solmaz R., Kardaş G., Çulha M., and Yazıcı B., “Investigation of adsorption and inhibitive effect of 2-mercapto thiazoline on corrosion of mild steel in hydrochloric acid media,” Electrochim Acta., Vol. 53, pp. 5941-5952, 2008.##

[30]. Ashassi-Sorkhabi H. and Asghari E., “Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a “green” inhibitor,” Electrochim Acta., Vol. 54, pp. 162-167, 2008.##

[31]. Sfaira M., Srhiri A., Keddam M., and Takenouti H., “Corrosion of a mild steel in agricultural irrigation waters in relation to partially blocked surface,” Electrochim Acta., Vol. 44, pp. 4395-4402, 1999.##

[32]. Gökhan G., “The use of quantum chemical methods in corrosion inhibitor studies,” Corros. Sci., Vol. 50, pp. 2981-2992, 2008.##