هیدروژن‏‏زدایی اکسایشی پروپان روی کاتالیست دوفلزی نیکل- وانادیوم برپایه ترکیبی تیتانیا-سیلیکا

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی دانشگاه علم و صنعت ایران

چکیده

رشد فزاینده تقاضای جهانی برای پروپیلن به تحقیقاتی گسترده برای یافتن روش‏هایی جای‏گزین منجر شده که برای تولید پروپیلن مقرون‏به‏صرفه باشند. فرآیند هیدورژن‏‏زدایی اکسایشی پروپان یک روش قابل‏اطمینان برای تولید پروپیلن است که هیچ کدام از معایب فرآیندهای اخیر تولید پروپیلن را ندارد. با این حال، کنترل گزینش‏پذیری تنها چالش اصلی پیش ‏روی صنعتی‏ شدن این فرآیند است، زیرا پروپان و پروپیلن می‏توانند به اکسیدهای کربن و دیگر محصولات تبدیل شوند. در این پژوهش، کاتالیست دوفلزی وانادیوم- نیکل برپایه ترکیبی تیتانیا- سیلیکا به‏روش ترکیبی سل- ژل و تلقیح مرطوب تهیه و عمل‏کرد آن در واکنش هیدورژن‏زدایی اکسایشی پروپان بررسی شد. مشخصات کاتالیست‏ها با آزمون‏های XRDا، BETا، FT-IR و SEM تعیین شدند. واکنش‏های هیدروژن‏زدایی اکسایشی پروپان در یک راکتور بستر ثابت انجام و تمام نمونه‏‏های ساخته‏شده در بازه دمایی C°550-350 با گام دمایی C°50 بررسی شدند. بهترین عمل‏کرد برای نمونه کاتالیستی (1:1)Si:Ti/اV %5/7-Ni %5/7 با بازده 33/14 % با مقدار تبدیل 84/41% به دست آمد
 

کلیدواژه‌ها


عنوان مقاله [English]

Propane Oxidative Dehydrogenation over Ni-V/TiO2-SiO2 Catalysts

نویسندگان [English]

  • Seyed Mehdi Alavi
  • Ahmad Arzhang
School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

The increasing worldwide demand for propylene has led extensive research to be deployed for establishing economically feasible alternative methods for propylene production. The oxidative dehydrogenation of propane is a promising route for propylene production that does not suffer from the any drawbacks of traditional methods. However, selectivity control in oxidative dehydrogenation of propane is the only main challenge to industrialization of this process, because propane and propylene can convert to COx and other products. In this investigation, titania- silica supported Nickel-Vanadium catalysts were synthesized and evaluated in oxidative dehydrogenation of propane. Catalysts were characterized by XRD, BET, FT-IR, and SEM tests. The propane oxidative dehydrogenation reactions were carried out in fixed-bed reactor. All samples were tested in the temperature range of 350-550°C The best performance among these prepared catalysts was obtained for 7.5%Ni- 7.5%V/Si: Ti(1:1) with propylene yield of 14.33% at propane conversion of 41.84% at 550°C
 

کلیدواژه‌ها [English]

  • Propane Oxidative Dehydrogenation
  • Propylene
  • Vanadium(V) Oxide
  • Titania-Silica Support

[1]. De León M. A., De Los Santos C., Latrónica L., Cesio A. M., Volzone C., Castiglioni J. and Sergio M. “High catalytic activity at low temperature in oxidative dehydrogenation of propane with Cr–Al pillared clay,” Chemical Engineering Journal, Vol. 241, pp. 336-343, 2014.##

[2]. Lin X. Z., Li G. C., Huang C. J., Weng W. Z. and Wan H. L. “P-Modified cobalt oxide: a novel and effective catalyst for oxidative dehydrogenation of propane,” Chinese Chemical Letters, Vol. 24, pp. 789-792, 2013.##

[3]. Al-Ghamdi S., Moreira J. and De Lasa H. “Kinetic modeling of propane oxidative dehydrogenation over VOx/γ-Al2O3 catalysts in the chemical reactor engineering center riser reactor simulator, Industrial & Engineering Chemistry Research, Vol. 53, pp. 15317-15332, 2014.##

[4]. Høj M., Kessler T., Beato P., Jensen A. D. and Grunwaldt J. D. “Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum–vanadium oxide catalysts prepared by flame spray pyrolysisfor Propane OHD,” Applied Catalysis A: General, Vol. 472, pp. 29-38, 2014.##

[5]. Al-Ghamdi S. A., and De Lasa H. I., “Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst,” Fuel, Vol. 128, pp. 120-140, 2014.##

[6]. Elvers B., “Ullmann’s encyclopedia of industrial chemistry,” 5th ed., New York, Wiley-VCH, 1993.##

[7]. Bhasin M., McCain J. H., Vora B. V., Imai T. and Pujado P. R., “Dehydrogenation and oxydehydrogenation of paraffins to olefins,” Applied Catalysis A: General, Vol. 221, pp. 397-419, 2001.##

[8]. Dharia D., Letzsch W., Kim H., McCue D. and Chapin L., “Increase light olefins production,” Hydrocarbon Processing, Vol. 83, pp. 61-66, 2004.##

[9]. Ballarini N., Cavani F., Cericola A., Cortelli C., Ferrari M., Trifirò F. and Cornaro U. “Supported vanadium oxide-based catalysts for the oxidehydrogenation of propane under cyclic conditions,” Catalysis Today, Vol. 91-92, pp. 99-104, 2004.##

[10]. Dinse A., Frank B., Hess C., Habel D. and Schomäcker R., “Oxidative dehydrogenation of propane over low-loaded vanadia catalysts: impact of the support material on kinetics and selectivity,” Journal of Molecular Catalysis A: Chemical, Vol. 289, pp. 28-37, 2008.##

[11]. Klisińska A., Samson K., Gressel I. and Grzybowska B., “Effect of additives on properties of V2O5/SiO2 and V2O5/MgO Catalysts,” Applied Catalysis A: General, Vol. 309, pp. 10-16, 2006.##

[12]. Lemonidou A. A., Nalbandian L. and Vasalos I. A., “Oxidative dehydrogenation of propane over vanadium oxide based catalysts effect of support and alkali promoter,” Catalysis Today, Vol. 61, pp. 333-341, 2000.##

[13]. Machli M., Heracleous E. and Lemonidou A. A., “Effect of Mg addition on the catalytic performance of V-based catalysts in oxidative dehydrogenation of propane,” Applied Catalysis A: General, Vol. 236, pp. 23-34, 2002.##

[14]. Rick B., Watson R. and Ozkan S., “K/Mo catalysts supported over Sol–Gel Silica–Titania mixed oxides in the oxidative dehydrogenation of propane,” Journal of Catalysis, Vol. 191, pp. 12-29, 2000.##

[15]. Zhaorigetu B. and Ecpm L. “Senergetic effect between NiO and Ni3V2O8 in Propane Oxidative Dehydrogenation», Catalysis Letters, Vol. 75, pp. 275-287, 2002.##

[16]. Boizumault Moriceau P. “Oxidative dehydrogenation of propane on Ni_Ce_O Oxide: effect of the preparation method, effect of potassium addition and physical characterization,” Applied Catalysis A: General, Vol. 245, pp. 55-67, 2003.##

[17]. Lezla O., Bordes E., Courtine P. and Hecquet G. “Synergetic effects in the Ni-Mo-O system,” Journal of Catalysis, Vol. 170, pp. 346-356, 1997.##

[18]. He Y., Wu Y., Chen T., Weng W. and Wan H. “Low-temperature catalytic performance for oxidative dehydrogenation of propane on nanosized Ti(Zr)–Ni–O prepared by modified Sol–gel method,” Catalysis Communications, Vol. 7, No. 5, pp. 268-271, 2009.##

[19]. Wu Y., He Y., Chen T., Weng W. and Wan H. “Low temperature catalytic performance of nanosized TiNiO for oxidative dehydrogenation of propane to propene”, Applied Surface Science, Vol. 252, No. 14, pp. 5220-5226, 2006.##

[20]. Zhang S., Wang J. and Wang X. “Effect of calcination temperature on structure and performance of Ni/TiO2-SiO2 Catalyst for CO2 Reforming of Methane,” Vol. 17, pp. 179-183, 2008.##

[21]. Weckhuysen B. M. and Keller D. E., “Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis,” Catalysis Today, Vol. 78, pp. 25-46, 2003.##

[22]. Kondratenko E. and M. Baerns. “Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O; the role of vanadia distribution and oxidant activation,” Applied Catalysis A: General, Vol. 222, pp.133-143, 2001.##

[23]. Evans O., “Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4,” Journal of Catalysis, Vol. 226, No. 2, pp. 292-300, 2004.##

[24]. Bellardita M., Addamo M., Di Paola A., Marcì G., Palmisano L., Cassar L. and Borsa M., “Photocatalytic activity of TiO2/SiO2 systems,” Journal of Hazardous Materials, Vol. 174, pp. 707-13, 2010.##

[25]. Balachandaran K., Venckatesh R. and Sivaraj R. “Synthesis of nano TiO2 -SiO2 composite using Sol-gel method: effect on size, surface morphology and thermal stability,” International Journal of Engineering Science and Technology, Vol. 2, No. 8, pp. 3695-3700, 2010.##

[26]. Rossetti I., Fabbrini L., Ballarini N., Oliva C., Cavani F., Cericola A. and Forni L. “V–Al–O catalysts prepared by flame pyrolysis for the oxidative dehydrogenation of propane to propylene,” Catalysis Today, Vol. 141, pp. 271-281, 2009.##

[27]. Cheng P., Zheng M., Huang Q., Jin Y. and Gu M., “Enhanced photoactivity of silica-titania binary oxides prepared by Sol-gel method,” Journal of Materials Science Letters, Vol. 22, pp. 1165-1168, 2003.##

[28]. Chen S., Ma F., Xu A., Wang L., Chen F. and Lu W., “Study on the structure, acidic properties of V–Zr nanocrystal catalysts in oxidative dehydrogenation of propane,” Applied Surface Science, Vol. 289, pp. 316-325, 2014.##

[29]. Ma F., Chen S., Li Y., Zhou H., Xu A. and Lu W. “Nano-MgO supported CrOx satalysts applied in propane oxidative dehydrogenation: relationship between active chromium phases and propane reaction pathway,” Applied Surface Science, Vol. 313, pp. 654-659, 2014.##

[30]. Putra M. D., Al-Zahrani S. M. and Abasaeed A. E., “Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr–V–Mo catalysts,” Catalysis Communications, Vol. 14, No. 1, pp. 107-110, 2011.##

[31]. Heracleous E., Machli M., Lemonidou A. A. and Vasalos I. A., “Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 232, pp. 29-39, 2005.##

[32]. Liu Y., Jiang C., Chu W., Sun W. and Xie Z., “Novel F–V2O5/SiO2 catalysts for oxidative dehydrogenation of propane,” Reaction Kinetics, Mechanisms and Catalysis, Vol. 101, No. 1, pp. 141-151, 2010.##

[33]. Zhang H., Cao S., Zou Y., Wang Y. M., Zhou X., Shen Y. and Zheng X., “Highly efficient V–Sb–O/SiO2 catalyst with Sb Atom-isolated VOx species for oxidative dehydrogenation of propane to propene,” Catalysis Communications, Vol. 45, pp. 158-161, 2014.##

[34]. Putra M. D., Al-Zahrani S. M. and Abasaeed A. E., “Kinetics of oxidehydrogenation of propane over Alumina-supported Sr–V–Mo catalysts,” Catalysis Communications, Vol. 26, pp. 98-102, 2012.##

[35]. Liu Y. M., Wang L. C., Chen M., Xu J., Cao Y., He H. Y. & Fan K. N. “Highly Selective Ce–Ni–O Catalysts for Efficient Low Temperature Oxidative Dehydrogenation of Propane,” Catalysis Letters, Vol. 130, pp. 350-354, 2009.##

[36]. Taylor M. N., Carley A. F., Davies T. E. & Taylor S. H. “The Oxidative Dehydrogenation of Propane Using Vanadium Oxide Supported on Nanocrystalline Ceria,” Topics in Catalysis, Vol. 52, No. 12, pp. 1660-1668, 2009.##

[37]. Liu C., Watson R. B. & Ozkan U. S. “Spectroscopic Characterization of Cl-modified Mo/Si:Ti Catalysts for Oxidative Dehydrogenation of Propane,” Topics in Catalysis, Vol. 41, pp. 63-72, 2006.##

[38]. Machli M. & Lemonidou A. A. “Optimization of V2O5-MgO/TiO2 Catalyst for The Oxidative Dehydrogenation of Propane Effect of Magnesia Loading and Preparation Procedure,” Catalysis Letters, Vol. 99, pp. 221-230, 2005.##

[39]. Jibril, B. Y., “Catalytic performances and correlations with metal oxide band gaps of metal-tungsten mixed oxide catalysts in propane oxydehydrogenation,” Vol. 86, No. 1, pp. 171-177, 2005.##

[40]. Sarzi-Amadè M., Morselli S., Moggi P., Maione A., Ruiz P. & Devillers M. “The Effect of Sol-gel Promoters on The Characteristics of Mixed V-Nb Oxides and their Catalytic Properties in Propane Oxidative Dehydrogenation,” Applied Catalysis A: General, Vol. 284, pp. 11-20, 2005.##

[41]. Klisińska A., Haras A., Samson K., Witko M. & Grzybowska B. “Effect of Additives on Properties of Vanadia-based Catalysts for Oxidative Dehydrogenation of Propane,” Journal of Molecular Catalysis A: Chemical, Vol. 210, pp. 87-92, 2004.##

[42]. Moggi P., Devillers M., Ruiz P., Predieri G., Cauzzi D., Morselli S. & Ligabue O. “Oxidative Dehydrogenation of Propane on pure and Silica-dispersed Multimetallic Oxides based on Vanadium and Niobium Prepared via Hydrolytic and Non-hydrolytic Sol–gel Methods,” Catalysis Today, Vol. 81, No. 2, pp. 77-85, 2003.##

[43]. Al-Zahrani S. M., Jibril B. Y. & Abasaeed A. E. “Selection of Optimum Chromium Oxide-based Catalysts for Propane Oxidehydrogenation,” Catalysis Today, Vol. 81, pp. 507-516, 2003.##

[44]. Garcia Cortez G., Fierro J. L. & Bañares M. “Role of Potassium on The Structure and Activity of Alumina-supported Vanadium Oxide Catalysts for Propane Oxidative Dehydrogenation,” Catalysis Today, Vol. 78, pp. 219-228, 2003.##

[45]. Leveles L., Fuchs S., Seshan K., Lercher J. A. & Lefferts L. “Oxidative Conversion of Light Alkanes to Olefins over Alkali Promoted Oxide Catalysts,” Applied Catalysis A: General, Vol. 227, pp. 287-297, 2002.##