بررسی اثر گــــــرافن نانومتخلخل بر غنـــی سازی هیــدرات گـــازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه صنعت نفت، تهران، ایران

2 دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی دانشگاه تهران، ایران

چکیده

در این تحقیق پس از بررسی ساختار گرافن نانومتخلخل با آنالیز SEM و رامان، از این نانوساختار گرافنی با غلظت 1% وزنی در فرآیند تشکیل هیدرات گازی استفاده شد. برای ایجاد و افزایش پایداری گرافن در آب، سورفکتانت SDS به کار رفت. نانوسیال در مجاورت گاز طبیعی تحت فشار psig 1000 و دمای C°4 قرار گرفت و با گذشت زمان هیدرات گازی درون راکتور تشکیل شد. ملاحظه شد که گرافن نانومتخلخل، ضمن کاهش زمان فرآیند القا، ذخیره‏سازی گاز را 6/14% افزایش داد و هیدراتی پایدارتر را نیز ایجاد کرد. با افزایش تدریجی دمای راکتور هیدرات ناپایدار و گاز طبیعی از آن متصاعد شد. با تجزیه 95% از هیدرات تشکیل‏شده، از گاز طبیعی نمونه‏گیری و با آنالیز GC ترکیبات آن مشخص و با گاز اولیه مقایسه شد. نتایج حاکی از افزایش ترکیبات سبک متان از 7/92 به 15/96% و حذف ناخالصی‏هایی چون دی‏اکسیدکربن و کاهش مقدار ترکیبات نامرغوب مانند نیتروژن و اکسیژن هستند؛ بنابراین بدون صرف هزینه و وقت اضافه، ضمن ذخیره‏سازی گاز به روش هیدرات فرآیندهای غنی‏سازی و خالص‏سازی گاز طبیعی نیز انجام می‏شوند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Nanoporous Graphene Effect on Enrichment Natural Gas by Hydrate Processes

نویسندگان [English]

  • ahmad ghozatloo 1
  • Mojtaba Shariaty-Niassar 2
1 Faculty member of Research, Institute of Petroleum Industry, (RIPI), Tehran
2 Department of Chemical Engineering, School of Engineering, University of Tehran, Iran
چکیده [English]

In this article, the structure of graphene nano-porous investigated by SEM image and Raman spectroscopy. Then the nano fluid of graphene nanostructures with 1% wt was used in gas hydrate formation process. SDS used as surfactant to enhancement of graphene stability in water. The nanofluid was in contact of natural gas under 1000 psig and °4C in cylindrical reactor and gas hydrate formed in the reactor by time. It was observed that the amount of gas storage increased by 14.6% while the induction time of the process was decreasing. The hydrate turns to unstable with increasing temperature of reactor and gas was released. The composition of natural gas in the top of reactor analyzed by GC and compared with initial natural gas. The results showed that light combination of natural gas; such as, methane increased from 92.7 to %96.15 and impurities; such as, carbon dioxide removed and undesirable compounds; such as, nitrogen and oxygen reduced. So, enrichment and purification of natural gas was performed without spending extra time and cost.
 

کلیدواژه‌ها [English]

  • Graphene Nano-porous
  • Gas Hydrate
  • Natural Gas
  • Enrichment
  • Gas Storage

[1]. Carroll J., “Natural gas hydrates: A Guide For Engineers,” 2nd, ed., USA, Gulf Professional, 2009.##

[2]. Thomas S. and Dawe R. A, “Review of ways to transport natural gas energy from countries which do not Need The Gas for domestic use,” Energy, 28, pp. 1461-1477, 2003.##

[3]. Dendy Sloan E. and Carolyn K., “Clathrate hydrates of natural gases,” 2nd, ed., Section Unusual Structure, pp. 167-172, 2007.  CRC press, USA.##

[5]. Rajnauth J. M., Barrufet and Falcone G., “Potential industry applications using gas hydrate technology,” The West Indian Journal of Engineering, 35, 2, pp.15-21, 2013.##

[6]. Verrett J., Posteraro D. and Servio P., “Surfactant effects on methane solubility and mole fraction during hydrate growth,” Chemical Engineering Science, 84, pp. 80-84, 2012.##

[7]. Mohammadi A., Manteghian M., Haghtalab A., Mohammadi A. H. and Rahmati Abkenar M., “Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS,” Chemical Engineering Journal, 237, pp. 387-395, 2014.##

[8]. Takaoki T., Iwasaki T., Katoh Y., Arai T. and Horiguchi K., “Use of hydrate pellets for transformation of natural gas-I; advantage of pellet form of natural gas hydrate in sea transportation,” 4th International Conference on Gas Hydrates, Yokohama, 2002.##

[9]. Zhong Y. and Rogers R., “Surfactant effects on gas hydrate formation,” Chemical Engineering Science, 55, pp. 4177-4187, 2000.##

[10]. Sun Z., Wang R., Ma R., Guo K. and Fan S., “Natural gas storage in hydrate with the presence of promoters,” Energy Conversion and Management, 44, pp. 2733-2742, 2003.##

[11] Sun Z., Ma G., R., Wang R., Guo K. and Fan S., “Experimental studying of additives effects on gas storage in hydrate,” Energy Flues, 17, pp. 1180-1185, 2003.##

[12] Guo Y., Fan S., Guo K. and Chen Y., “Storage capacity of methane in hydrate using calcium hypochlorite as additive,” 4th International Conference on Gas Hydrates, Yokohama, 2002.##

[13]. Lin W., Chen G. J., Sun C. Y., Guo X. Q., Wu Z. K. and Liang M. Y., “Effect of surfactants on the formation and dissociation behavior of methane hydrate,” Chemical Engineering Science, 59, pp. 4449-4455, 2004.##

[14]. Ganji H., Manteghian M., Sadaghiani K., Omidkhah M. R. and Rahimi Mofrad H., “Effect of different surfactants on methane hydrate formation rate, stability and storage capacity,” Fuel, 86, pp. 434-441, 2007.##

[15]. Ganji H., Manteghian M. and Rahimi Mofrad H., “Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity,” Fuel Processing Technology, 88, pp. 891-895, 2007.##

[16]. Han X., Wang S., Chen X. and Liu F., “Surfactant accelerates gas hydrate formation,” 4th international Conference on Gas Hydrates, Yokohama, 2002.##

[17]. Ganandran N. and R. Amin. “The effect of hydrotropes on gas hydrates formation,” Petroleum Science Engineering, 40, pp. 37-46, 2003.##

[18]. Karaaslan U., Uluneye E. and Parlaktuna M., “Effect of an anionic surfactant on different type of hydrate structures,” Petroleum Science Engineering, 35, pp. 49-57, 2002.##

[19]. Arjang S., Manteghian M. and Mohammadi A., “Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa,” Chemical Engineering Research and Design, 91, 6, pp. 1050-1054, 2013.##

[20]. Subrina S. and D. Kotchetkov., “Simulation of heat conduction in suspended graphene flakes of variable shapes,” Nanoelectronics and Optoelectronics, 3, pp. 1-21, 2008.##

[21]. Leroux Y. R., Bergamini J. F., Ababou S., Le Breton J. C. and Hapiot P., “Synthesis of functionalized few- layer graphene through fast electrochemical expansion of graphite,” Electroanalytical Chemistry, 753, pp. 42-46, 2015.##

[22]. Geim A. K. “Graphene: status and prospects,” Science, 324, pp. 1530-1534, 2009.##

[23]. Katsnelson M. “Graphene: carbon in two dimensions,” Materialstoday, 10, pp. 20-27, 2007. ##

[24]. Rao C. N. R., Biswas K., Subrahmanyam K. S. and Govindaraj A., “Graphene, the new nanocarbon,” Material Chemistry, 19, pp. 2457-2469, 2009.##

[25]. Geim A. K. and Novoselov K. S., “The rise of graphene,” Nature Materials, 6, pp.183-191, 2007.##