نوع مقاله: مقاله پژوهشی
نویسندگان
1 گروه زمینشناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایران
2 گروه زمینشناسی، دانشکده علوم طبیعی، دانشگاه تبریز، ایران
3 گروه زمینشناسی، شرکت ملی مناطق نفتخیز جنوب، اهواز، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Thermal maturity is the primary geological factor in petroleum exploration and source rock assessment. Besides, Thermal maturity is an index to determine the maximum temperature that the source rock which has endured at the different stages of an evaluation of hydrocarbon. Measurement of this parameter requires conducting geochemical analyses on cutting samples which is expensive and time consuming, therefore the main objective of the research is development of a new method for direct estimation of this parameter from well log and seismic using a metaheuristic algorithm called Ant Colony Algorithm. In this research, 2D-seismic and petrophysical data of the Pabdeh Formation from 3 wells of the Mansuri Oil field were used. Also, a Maturity Index Equation at the well location was used to predict Maturity Index values from well logs; such as, neutron, resistivity, sonic and density. These calculated values were used as inputs for a Multi Attribute Analysis. Seismic inversion was performed based on a Neural Networks Algorithm because of its high accuracy; moreover, the resulting acoustic impedance was utilized as an external attribute. Afterwards, a Probabilistic Neural Network was trained using the set of predicting attributes derived from multiple regressions. Subsequently, MI was estimated using seismic attributes with a correlation coefficient of 87%. In the next step, the nonlinear Ant Colony Optimization technique was utilized as an intelligent tool to estimate and product a Maturity Index seismic section. It calculates weight factors for each of seismic attributes. The correlation coefficient between the input and output data was estimated 91% by nonlinear ACO. Finally, MI seismic section was produced. The comparison of the results from PNN with ACO methods revealed that the accuracy of ACO model was higher than the PNN.
کلیدواژهها [English]
[1]. Mallick R. K. and Raju S. V., “Thermal maturity evaluation by sonic log and seismic velosity analysis in parts of Upper AssamBasin, India,” Org. Geochemistry, Vol. 23, No. 10, pp. 871-879, 1995.##
[2]. Zhao H., Natalie B. G. and Brad C., “Thermal maturity of the Barnett Shale determined from well-log analysis,” AAPG Bulletin, Vol. 91, No. 4, pp. 535-549, 2007.##
[3]. Shiri M., Ranjbar Karami R., Moussavi Harami R. and Rezaee M. R., “Evaluation of organic carbon content and source rock maturity using petrophysical logs and geochemical data: Case study of horn valley siltstone source rock, amadeus basin, Central Australia,” Journal of Zankoy Sulaimani - Part A (JZS-A), pp.145-158, 2013.##
[4]. Kamali M. R. and Mirshady A. A., “Total organic carbon content determined from well logs using ∆logR and neuro fuzzy techniques,” Journal of Petroleum Science and Engineering., Vol. 45, pp. 141–148, 2004.##
[5]. Kadkhodaie Ilkhchi A., Rahimpour Bonab H. and Rezaee M. R., “A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: an example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran,” Journal of Comput. Geosci., Vol. 35, pp. 459-474, 2009.##
[15]. علیزاده ب.، ولینسب ح.، کدخدائی ع.، کبرائی م.، "مقایسه دادههای پتروفیزیکی با ژئوشیمیایی در تعیین شاخص بلوغ و کل کربن آلی،" سی و دومین گردهمایی و نخستین کنگره بین المللی تخصصی علوم زمین، شرکت ملی نفت ایران، 1392.##
[23]. Toksarı M.D., “Ant colony optimization approach to estimate energy demand of Turkey,” Energy Policy, 35, 3984–3990, 2007.##