مدل‌سازی پهنه‌های اکتشاف نفتی با شبکه عصبی پرسپترون چند لایه (MLP) در GIS

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، ایران

2 گروه اکتشاف معدن، دانشکده مهندسی معدن، دانشگاه تهران، ایران

چکیده

فرآیند اکتشاف منابع هیدروکربنی به‌عنوان فرآیندی بسیار پیچیده و پرهزینه می‌باشد. در این فرآیند فاکتورهای متعدد زمین‌شناسی، ژئوشیمی و ژئوفیزیک تهیه و باهم تلفیق می‌شوند. طراحی بهترین مسیر برای برداشت داده‌های لرزه‌نگاری و همچنین تعیین بهترین محل برای حفر چاه‌های اکتشافی از اهمیت ویژه‌ایی برخوردار است، زیرا نتیجه تعیین نادرست یا بی‌دقت این مکان‌ها، صرف هزینه و زمان زیاد در طول عملیات می‌باشد. این تحقیق با هدف تعیین مناطق محتمل نفت و گاز با مقیاس 1:25000 اهواز با 20 میدان نفتی به منظور کاهش زمان و هزینه اکتشاف و تولید می‌باشد. 17 نقشه‌ فاکتور شامل: کمترین و بیشترین مقدار(غنای کربن آلی، بازده پتانسیل برای تولید هیدروکربن، پیک Tmax، اندیس تولید، اندیس اکسیژن، اندیس هیدروژن) و داده‌های مجاورت به مناطق دارای آنومالی باقی‌مانده ثقل بوگه بالا، محور طاقدیس‌ها و گسل‌ها، نقشه‌ ناهمواری و انحنا حاصل از منحنی‌های زیر سطحی سازند آسماری توسط توابع سیستم اطلاعات جغرافیایی ایجاد شدند. برای ترکیب نقشه‌های فاکتور، از مدل شبکه عصبی پرسپترون MLP که از روش‌های داده مبنا است، استفاده شد. نتایج حاصل از مدل‌سازی با داده‌های آزمون نشان داد که شبکه عصبی 5×10×17، با شاخص کاپای 9079/0، همبستگی 8948/0 و RMSE برابر با 0267/0 توانسته است بهتر از مدل‌های دیگر، خروجی‌ها را تولید کرده و با دقت بالایی میدان‌های نفتی را پیش‌بینی کند هرچند که میادین سوفلا و سپهر شناسایی نشده و برخی قسمت‌ها نیز به اشتباه، جزء میادین نفتی طبقه‌بندی شده‌اند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Spatial modeling of oil exploration areas using multilayer perceptron neural network (MLP) in GIS

نویسندگان [English]

  • Nouraddin Misagh 1
  • Najmeh neisany samany 1
  • Ataollah Abdollahi Kakroodi 1
  • Seyed Kazem Alavipanah 1
  • Abbas Bahroudi 2
1 Department of Remote Sensing and GIS, College of Geography, University of Tehran, iran
2 Exploration Department, Mining Engineering Faculty, College of Engineering, University of Tehran, Iran
چکیده [English]

The exploration of hydrocarbon resources as a process is very complex and costly. In this process, multiple factors of geology, geochemistry and geophysics are prepared and combined together. Designing the best route to take seismic data and determine the best location for drilling exploration wells is extremely important because improper or careless determination of the location, time consuming and expensive during the operation. The aim of this study was to identify possible areas for oil and gas in the map of 1: 250,000 Ahvaz with 20 oil fields using multilayer perceptron neural network (MLP) and geographic information systems. For this purpose, 17 maps of factors including: the lowest and highest values (total organic carbon, potential for the production of hydrocarbons, peak Tmax, the production index, the oxygen index, the hydrogen index) and the proximity to areas of an high Bouguer gravity anomaly, an anticline axis and faults, map of the topography and the curvature of the yield curve Asmari subsurface were created by GIS functions. For the combined factor map, the multilayer perceptron neural network (MLP) that is data-driven methods was used. The validation results showed that the neural network 17×10×5 is better than the other models with a R = 0.8948 ,RMSE=0.0267 and the Kappa=9079. Besides, the neural network 17×10×5 is able to accurately predict the oil fields. On the other hands, Some fields could not be identified, and also, some areas were classified oil fields mistakenly.
 

کلیدواژه‌ها [English]

  • Oil Exploration Areas
  • Modeling
  • MLP
  • GIS
  • Oil Fields

[1]. Ghobadian B., Najafi Gh. H., Rahimi H. and Yusaf T. F., “Future of renewable energies in Iran,” Renewable and Sustainable Energy Reviews.,Vol. 13, No. 3, pp. 689-695, 2009.##

[2]. Bott R, and Carson D. M., “Canada’s evolving offshore oil and gas industry,” Canadian Centre for Energy Innovation. Vol. 51, pp. 321-338, 2007.##

[3]. Carranza E. J. M., van Ruitenbeek F. J. A., Hecker C., Van der Meijde M. and Van der Meer F. D., “Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SEP Spain,” International Journal of Applied Earth Observation and Geoinformation, Vol. 10, pp. 374-387, 2008.##

[4]. Nikravesh M. and Fred A., “Mining and fusion of petroleum data with fuzzy logic and neural network agents,” Journal of Petroleum Science and Engineering.,Vol. 29, No. 1, pp. 221-238, 2001.##

[5]. Fabio D. F., and Luca S., “Oil spill detection by means of neural networks algorithms: A sensitivity analysis,” Geoscience and Remote Sensing Symposium IGARSS›04, Proceedings IEEE International., Vol. 2, pp. 125-130, 2004.##

[6]. Liua X., Zhong G., Yina J., Hec Y. and Lia X., “GIS-based modeling of secondary hydrocarbon migration pathways and its application in the northern Songliao Basin, Northeast China,” Computers & Geosciences., Vol. 34, No. 9, pp. 1115-1126, 2008.##

[7]. Lisa B., Raúl Z., and Alejandro E., “Geographic information system–based fuzzy-logic analysis for petroleum exploration with a case study of northern South America,” AAPG Bulletin, Vol. 96, No. 11, pp. 2121-2142, 2012.##

[8]. Attila A. “Hydrocarbon potential of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey: A comparison of geophysical investigation results with the geochemical data,” Journal of Petroleum Science and Engineering., Vol. 61, No. 1, pp. 33-47, 2008.##

[9]. روستا م. "بررسی پتانسیل نفت زایی در زون ساختاری قم- اردستان در محیط GIS،" پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، 1387##

[10]. Mohammad A. A, Mohammad K, and Abbas A. S. “Hydrocarbon resources potential mapping using the evidential belief functions and GIS, Ahvaz/Khuzestan Province, Southwest Iran,” Arabian Journal of Geosciences., Vol. 8, No. 6, pp. 3929-3941, 2014.##

[11]. Shahram Sh. and Jean E. “Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran,” Marine and Petroleum Geology., Vol. 21, No. 5, pp. 535-554, 2003.##

[12]. اشکان ع.، "اصول مطالعات ژئوشیمیایی سنگ‌های منشاء هیدروکربوری و نفت‌ها با نگرش ویژه به حوضه رسوبی زاگرس،" انتشارات روابط عمومی شرکت نفت، صفحات 86-72، 1383.##

[13]. Waples D. W., “Geochemistry in petroleum exploration,” Springer Science & Business Media, 2013.##

[14]. Riley Shawn J., DeGloria Stephen D., and Elliot Robert. “A terrain ruggedness index that quantifies topographic heterogeneity,” Intermountain Journal of sciences., Vol. 5, No. 4, pp. 23-27, 1999.##

[15]. Grohmann C. H., Smith M. J. and Riccomini C., “Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland,” Geoscience and Remote Sensing, IEEE Transactions on, Vol. 49, pp. 1200-1213, 2011.##

[16]. Mango F. D, “The origin of light hydrocarbons in petroleum: ring preference in the closure of carbocyclic rings,” Geochimica et Cosmochimica Acta., Vol. 58, pp. 895-901, 1994.##

[17]. Pan Y, “lnterpretation and seismic coordination of the Bouquer gravity anomalies obtained in southwestern taiwan,” No. 6, pp. 198-208, Dec. 1968.##

[18]. Mohaghegh Sh., “Petroleum reservoir characterization with the aid of artificial neural networks,” Journal of Petroleum Science and Engineering., Vol. 16, No. 4, pp. 263-274, 1996.##

[19]. منهاج م.، "مبانی شبکه‌های عصبی،" انتشارات دانشگاه صنعتی امیر کبیر، صفحات 69-56، 1378.##

[20]. جکسون ، بیل، آر.، "آشنایی با شبکه های عصبی،" البرزی محمود، انتشارات علمی دنشگاه شریف، صفحات 136-102، 1380.##

[21]. Jensen P., Krogsgaard M. R., Christiansen J., Brændstrup O., Johansen A. and Olsen J., “Observer variability in the assessment of type and dysplasia of colorectal adenomas, analyzed using kappa statistics,” Diseases of the Colon & Rectum., Vol. 38, No. 2, pp. 195-198, 1995.##

[22]. Reimann C., Filzmoser P., Garrett R., and Dutter R. “Statistical data analysis explained: applied environmental statistics with R,” John Wiley & Sons. 2011.##

[23]. مهناج م.ب.،"معرفی شبکه عصبی مصنوعی،" انتشارات دکتر حسابی، صفخات 645-640، 1374##

[24]. Benediktsson J. A., Swain P. H., and Erosy O.K., “Neural network approaches versus statistical methods in classification of multisource remote Sensing data,” IEEE Transaction on Geosciences and Remote Sensing, 28(4): pp. 540-551, 1990##

[25]. Kia M. “Neural network in MATLAB,” Kian Rayaneh Sabz Publisher, 2010.##