شبیه‌سازی و بررسی ناپایداری غیر خطی انگشتی‌‌شدن لزج دو سیال قابل امتزاج در محیط متخلخل همگن

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه‌‌نصیر‌الدین طوسی، تهران، ایران

چکیده

پدیده انگشتی‌شدن ناشی از ناپایداری سیال در محیط متخلخل، کاربردها و نمونه‌های مختلفی در صنایع، فرآیندها و مسائل طبیعی دارد. در سال‌های اخیر، مطالعات متعددی بر روی پایداری در محیط متخلخل توسط محققین صورت گرفته‌است. با توجه به اینکه پایداری جریان قابل امتزاج در محیط‌های متخلخل، یکی از مسائل کلاسیک به شمار می‌رود، در این مقاله با شبیه‌سازی غیر خطی ناپایداری انگشتی‌شدن لزج، در محیط همسان‌گرد، به بررسی آن پرداخته‌ایم. با استفاده از روش طیفی و به کاربردن تبدیل فوریه سریع، معادلات بازنویسی و ناپایداری شبیه‌سازی شد. با در نظر گرفتن طول اختلاط، بازدهی و میانگین غلظت عرضی به‎عنوان پارامترهایی جهت تشخیص میزان ناپایداری و بررسی آنها به ازای شرایط مختلف نسبت تحرک، مساله ناپایداری، زمان رشد و اغتشاش و شدت آن مورد بررسی قرار گرفت. با افزایش میزان نسبت تحرک، از بازدهی کاسته و به طول اختلاط افزوده می‌شود. همچنین با تحلیل نمودار طول اختلاط و استفاده از حل دقیق، زمان شروع انگشتی اولیه را مورد بحث قرار دادیم. سپس الگوهای انگشتی مورد بررسی قرار گرفت و یک الگوی جدید برای اولین بار مشاهده و نام‌گذاری شد. همچنین با استفاده از برهم نهی بردار سرعت و کانتور غلظت، به‌صورت کامل تاثیر غلظت بر بردار سرعت و تاثیر هر دو پارامتر بر علت به وجود آمدن الگوی‌های مختلف انگشتی مورد بررسی قرار گرفت
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation and Nonlinear Instability Investigation of Two Miscible Fluid Flow in Homogeneous Porous Media

نویسندگان [English]

  • Iman Maleka Ashtiani
  • Ali Saberi
  • Mohammad Reza Shahnazari
Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Fingering phenomena in porous media has a lot of applications and various models in industries and natural issues. Recently several studies have been done on the stability of fluid in porous media. In this paper, the nonlinear instability of viscous fingering in a homogenous porous media is studied. Using a Fourier spectral method as the basic scheme for numerical simulation, equations transferred to Fourier space. The effect of mobility ratio on mixing length, sweep efficiently and transversely average concentration is examined and results indicate that in a high mobility ratio, sweep efficiently decrease and mixing length increase. Also estimation on beginning of viscous fingering instability has been done by analyzing of mixing length›s graph. In this paper, a new finger interaction mechanism is reported for the first time and named trifurcated tip, other mechanisms reported by previous researcher in the case of high mobility ratio, all are observed in this paper. Also the development of the new finger structures is explained by examining the velocity field which is superposed on the concentration contour.
 

کلیدواژه‌ها [English]

  • Instability
  • Viscous Fingering
  • Porous Media
  • Nonlinear Simulation
  • Fingering Mechanism

[1]. Hill, S. “Channeling in packed columns,” Chem. Eng. Sci., Vol. 1, Issue 6, pp. 247-253, 1952.##

[2]. Peaceman D. W. and Rachford JR. H., “Numerical calculation of multidimensional miscible displacement,” SPE, Vol. 2, pp. 327-339, 1962 ##

[3]. Blackwell R. J., Rayne J. R. and Terry W. M., “Factors influencing the efficiency of miscible displacement,” Trans. AIME, Vol. 217, pp. 1-8. 1959.##

[4]. Christie M. A. and Bond D. J., “Multidimensional Flux Corrected Transport for Reservoir Simulation,” SPE Reservoir Simulation Symposium, 1985.##

[5]. Thomas F. R., Mary F. W. and Chen C., “Large-scale simulation of miscible displacement by mixes and characteristic finite Element Methods,” Mathematical and Computational Method in Seisanic Exploration and Reservior Modeling, pp. 85-107, 1986.##

[6]. Moissis D. E, Miller C. A. and Wheeler M. F. “A Parametric study of viscous fingering In miscible displacement by numerical simulation,” Numerical Simulation in Oil Recovery, pp. 227-247, 1988.##

[7]. Tan C.T. and Homsy G. M. “Simulation of nonlinear viscouse fingering in miscible displacement,” Physics of Fluids.  Vol. 31(6) , 1988.##

[8]. Zimmerman W. B. and Homsy G. M. “Nonlinear viscous fingering in miscible displacements with anisotropic dispersion,” Phys. Fluids A, Vol. 4, pp. 1859-1872, 1992.##

[9]. Singh B. K. and Azaiez J. “Numerical simulation of viscous fingering of shear-thinning fluids,” The Canadian journal of Chemical Engineering, Vol. 79(6), pp. 961–967, 2001.##

[10]. Zimmermann W. B. and Homsy G. B., “Viscous fingering in miscible displacements: Unifcation of effects of viscosity contrast, anisotropic dispersion and velocity dependence of dispersion on non-linear finger propagation,” Physics of Fluids A, Vol. 4, pp. 2348-2359, 1991.##

[11]. Tan C. T. and  Homsy G. M., “Viscous fingering with permeability heterogeneity,” Physics of Fluids A, Vol. 4, pp. 1099-1108, 1992.##

[12]. Zimmermann W. B. and Homsy G. M., “Three-dimensional viscous fingering: a numerical study,” Physics of Fluids A, Vol. 4, pp. 1901-1914, 1992.##

[13]. Rogerson A., Meiburg E. “Numerical simulation of miscible displacement recesses in porous media flows under gravity,” Physics Fluids A, Vol. 5, pp. 2644-2666, 1993.##

[14]. Manickam O. and Homsy, G. M., “Fingering Instabilities in Vertical Miscible Displacement Flows in Porous Media,” Journal of Fluid Mechanic, Vol. 6, pp. 95-107, 1995.##

[15]. Manickam O. and Homsy G. M., “Stability of miscible displacements in porous media with no monotonic viscosity profile,” Physics of Fluids, Vol. 5, pp. 1356-1367, 1993.##

[16]. Islam M. N. and Azaiez J., “Fully implicit Finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements,” International Journal for Numerical Methods In Fluids, Vol. 47(2), pp. 161-183, 2005.##

[17]. Tryggvason G. and Aref H., “Finger-interaction mechanisms in stratified Hele-Shaw flow,” J. Fluid Mech, Vol. 154, pp. 287-301, 1985.##

[18]. Tan C. T. and Homsy G. M., “Stability of miscible displacements in porous media, rectilinear flow,” Phys. Fluids, Vol. 29, pp. 3549-3556, 1986.##

[19]. Wit A. De., “Miscible density fingering of chemical fronts in porous media,” Phys. Fluid, Vol. 16(1), pp. 163-175, 2004.##

[20]. Meiburg E. and Homsy G. M., “Nonlinear unstable viscous fingers in Hele-Shaw flows. II. Numerical simulation,” Physics of Fluids, Vol. 31(3), pp. 429-439, 1988.##

[21]. Canuto C., Hussaini M. Y., “Spectral methods in fluid Dynamics,” Springer, 1987.##

[22]. Kenneth A. and Jackson, “Kinetic processes: crystal growth, diffusion, and phase transitions in materials,” Wiley VCH, p. 85, 2010.##

[23]. Koval E. J. “A method for predicting the performance of unstable miscible displacements in heterogeneous media,” The Society of Petroleum Engineers, Vol. 219, pp. 145–150, 1963.##

[24]. Todd M. R. and Longstaff W. J., “The development, testing and application of a numerical simulator for predicting miscible flood performance,” Journal of Petroleum Technology, Vol. 24(7), pp. 874–882, 1972.##

[25]. Norouzi M. and Shogh M. R., “Nonlinear simulation of non-newtonian viscous fingering instability in anisotropic porous media,” Modares Mechanical Engineering, Vol. 15, No. 7, pp. 415-425, 2015.##

[26]. Kawaguchi M., Makino K. and Kato T., “Comparison of viscous fingering patterns in polymer and Newtonian fluids,” Physica D, Vol. 105, pp. 121-129, 1997.##

[27]. Li H. “Viscous fingering in non-newtonian flow,” M.Sc. Thesis, Department of Chemical & Petroleum Engineering, University of Calgary, 2002.##