[1]. Fathi S., Sohrabi M. and Falamaki C., “Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions,” Fuel, Vol. 116, pp. 529-537, 2014.##
[2]. Ahmadpour J. and Taghizadeh M., “Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide,” Comptes Rendus Chimie, Vol. 18, No. 8, pp. 834-847, 2015.##
[3]. Rostamizadeh M. and Yaripour F., “Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversio,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 71, pp. 454-463, 2017.##
[4]. Yaripour F., Shariatinia Z., Sahebdelfar S., and Irandoukht A. , “Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction,” Microporous and Mesoporous Materials, Vol. 203, pp. 41-53, 2015.##
[5]. Groen J. C., Peffer L. A., Moulijn J. A. and Pérez-Ramırez J., “Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 241, No. 1-3, pp. 53-58, 2004.##
[6]. Abello S., Bonilla A. and Perez-Ramirez J., “Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching,” Applied Catalysis A: General, Vol. 364, No. 1, pp. 191-198, 2009.##
[7]. Möller K. and Bein T., “Mesoporosity–a new dimension for zeolites,” Chemical Society Reviews, Vol. 42, No. 9, pp. 3689-3707, 2013.##
[8]. Serrano D. and Pizarro P., “Synthesis strategies in the search for hierarchical zeolites,” Chemical Society Reviews, Vol. 42, No. 9, pp. 4004-4035, 2013.##
[9]. Pérez-Ramírez J., Christensen C. H., Egeblad K., Christensen C. H. and Groen J. C., “Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design,” Chemical Society Reviews, Vol. 37, No. 11, pp. 2530-2542, 2008.##
[10]. Verboekend D. and Pérez-Ramírez J., “Design of hierarchical zeolite catalysts by desilication,” Catalysis Science & Technology, Vol. 1, No. 6, pp. 879-890, 2011.##
[11]. Mochizuki H., Yokoi T., Imai H., Namba S., Kondo J. N. and Tatsumi T., “Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking,” Applied Catalysis A: General, Vol. 449, pp. 188-197, 2012.##
[12]. Bleken F. L., Barbera K., Bonino F., Olsbye U., Lillerud K. P., Bordiga S., Beato P., Janssens T. V. and Svelle S., “Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons,” Journal of Catalysis, Vol. 307, pp. 62-73, 2013.##
[13]. Rac V., Rakić V., Miladinović Z., Stošić D. and Auroux A., “Influence of the desilication process on the acidity of HZSM-5 zeolite,” Thermochimica Acta, Vol. 567, pp. 73-78, 2013.##
[14]. Sadowska K., Góra-Marek K., Drozdek M., Kuśtrowski P., Datka J., Triguero J. M. and Rey F., “Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide,” Microporous and Mesoporous Materials, Vol. 168, pp. 195-205, March 2013.##
[15]. Wan W., Fu T., Qi, R. Shao J. and Li Z., “Coeffect of Na+ and tetrapropylammonium (TPA+) in Alkali Treatment on the Fabrication of Mesoporous ZSM-5 Catalyst for Methanol-to-Hydrocarbons Reactions,” Industrial & Engineering Chemistry Research, Vol. 55, No. 51, pp. 13040-13049, 2016.##
[16]. Yoo W. C., Zhang X., Tsapatsis M. and Stein A., “Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes,” Microporous and Mesoporous Materials, Vol. 149, No. 1, pp. 147-157, 2012. ##
[17]. Peng P., Wang Y., Rood M. J., Zhang Z., Subhan F., Yan Z., Qin L., Zhang Z., Zhang Z. and Gao X., “Effects of dissolution alkalinity and self-assembly on ZSM-5-based micro-/mesoporous composites: a study of the relationship between porosity, acidity, and catalytic performance,” Cryst. Eng. Comm., Vol. 17, No. 20, pp. 3820-3828, 2015.##
[18]. Peng P., Wang Y., Zhang Z., Qiao K., Liu X., Yan Z., Subhan F. and Komarneni S., “ZSM-5-based mesostructures by combined alkali dissolution and re-assembly: Process controlling and scale-up,” Chemical Engineering Journal, Vol. 302, pp. 323-333, 2016.##
[19]. Schmidt F., Lohe M. R., Büchner B., Giordanino F., Bonino F. and Kaskel S., “Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants,” Microporous and Mesoporous Materials, Vol. 165, pp. 148-157, 2013.##
[20]. Yang Y., Sun C., Du J., Yue Y., Hua W., Zhang C., Shen W. and Xu H., “The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction,” Catalysis Communications, Vol. 24, pp. 44-47, 2012.##
[21]. Xu A., Ma H., Zhang H., Weiyong D. and Fang D., “Effect of boron on ZSM-5 catalyst for methanol to propylene conversion,” Polish Journal of Chemical Technology, Vol. 15, No. 4, pp. 95-101. 2013.##
[22]. Chen H., Wang Y., Meng F., Sun C., Li H., Wang Z., Gao F., Wang X. and Wang S., “Aggregates of superfine ZSM-5 crystals: The effect of NaOH on the catalytic performance of methanol to propylene reaction,” Microporous and Mesoporous Materials, Vol. 244, pp. 301-309, 2017.##
[23]. Selvaraj M., Pandurangan A., Seshadri K. S., Sinha P. K., Krishnasamy V. and Lal K. B., “Comparison of mesoporous Al-MCM-41 molecular sieves in the production of p-cymene for isopropylation of toluene,” Journal of Molecular Catalysis A: Chemical, Vol. 186, No. 1, pp. 173-186, 2002.##
[24]. Selvaraj M., Pandurangan A., Seshadri K. S., Sinha P. K. and Lal K. B., “Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al,” Applied Catalysis A: General,Vol. 242, No. 2, pp. 347-364, 2003.##
[25]. Leofanti G., Padovan M., Tozzola G. and Venturelli B., “Surface area and pore texture of catalysts,” Catalysis Today, Vol. 41, No. 1, pp. 207-219, 1998.##
[26]. Rostamizadeh M. and Taeb A., “Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP),” Journal of Industrial and Engineering Chemistry, Vol. 27, pp. 297-306, 2015.##
[27]. Song C.-M., Jiang J. and Yan Z. f., “Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite,” Journal of Porous Materials, Vol. 15, No. 2, pp. 205-211, 2008.##
[28]. Yinghong Y., Sun Y., Xu Q. and Gao Z., “Catalytic activities and properties of AlHMS mesoporousmolecularsieves,” Applied Catalysis A: General, Vol. 175, No. 1, pp. 131-137, 1998.##
[29]. Wenyong L., Cai Q., Pang W., Yue Y. and Zou B., “New mineralization agents for the synthesis of MCM-41,” Microporous and Mesoporous Materials, Vol. 33, No. 1, pp. 187-196, 1999.##
[30]. Okumura K., Nishigaki K. and Niwa M., “Prominent catalytic activity of Ga-containing MCM-41 in the Friedel–Crafts alkylation,” Microporous and Mesoporous Materials, Vol. 44, pp. 509-516, 2001.##
[31]. Jana S. K., Takahashi H., Nakamura M., Kaneko M., Nishida R., Shimizu H., Kugita T. and Namba S., “Aluminum incorporation in mesoporous MCM-41 molecular sieves and their catalytic performance in acid-catalyzed reactions,” Applied Catalysis A: General, Vol. 245, No. 1, pp. 33-41, 2003.##
[32]. Kugita T., Jana S. K., Owada T., Hashimoto N., Onaka M. and Namba S., “Mesoporous Al-containing MCM-41 molecular sieves: highly active catalysts for Diels–Alder reaction of cyclopentadiene with α, β-unsaturated aldehydes,” Applied Catalysis A: General, Vol. 245, No. 2, pp. 353-362, 2003.##
[33]. Jana S. K., Kugita T. and Namba S., “Aluminum-grafted MCM-41 molecular sieve: an active catalyst for bisphenol F synthesis process,” Applied Catalysis A: General, Vol. 266, No. 2, pp. 245-250, 2004.##
[34]. Milina M., Mitchell S., Cooke D., Crivelli P. and Pérez‐Ramírez J., “Impact of Pore Connectivity on the Design of Long‐Lived Zeolite Catalysts,” Angewandte Chemie International Edition, Vol. 54, No. 5, pp. 1591-1594, 2015.##
[35]. Ilias S. and Bhan A., “Mechanism of the catalytic conversion of methanol to hydrocarbons,” ACS Catalysis, Vol. 3, No. 1, pp. 18-31, 2012.##
[36]. Xianyong S., “Catalytic Conversion of Methanol to Olefins over HZSM-5 Catalysts,” Doctoral Dissertation, Technische Universität München, 2013.##
[37]. Ke J.A. and Wang I., “Elucidation of the role of potassium fluoride in the chemical and physical nature of ZSM-5 zeolite,” Materials Chemistry and Physics, Vol. 68, No. 1, pp. 157-165, 2001.##