بررسی آزمایشگاهی و مدل‎سازی جذب 6,4-دی‌متیل‌دی‌بنزوتیوفن توسط کربن فعال اصلاح‌شده

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مهندسی گاز، دانشکده نفت اهواز، دانشگاه صنعت نفت، اهواز، ایران

چکیده

در این مطالعه، بررسی‌های تعادلی و سینتیکی فرآیند جداسازی 6,4- دی‌متیل‌دی‌بنزوتیوفن از یک سوخت مدل با استفاده از کربن فعال، انجام شده است. ایزوترم‌های جذب فرندلیخ و تاث با داده‌های آزمایشگاهی جذب تعادلی برازش شده است. همچنین داده‌های سینتکی فرآیند جذب نیز با استفاده از دو مدل سینتیکی نفوذ درون‌ذره‌ای و نفوذ سطحی همگن برازش شده است. نتایج جذب تعادلی نشان می‌دهد که ایزوترم‌های فرندلیخ و تاث به خوبی رفتار تعادلی فرآیند را تفسیر می‌کنند. نتایج داده‌های سینتیکی نشان می‌دهند که مدل نفوذ سطحی همگن، به‎خوبی قادر به پیش‌بینی نتایج آزمایشگاهی است. مدل‎سازی ریاضی فرآیند با استفاده از مدل نفوذ سطحی همگن، همچنین منجر به محاسبه مقادیر عددی ضرایب انتقال جرم و نفوذ برای جذب 6,4- دی‌متیل- ‌دی‌بنزوتیوفن به‎ترتیب m/min 2-10× 5558/2 و m2/min 6-10× 4056/3 گردید. همچنین استفاده از این مدل، مقاومت انتقال جرم در مراحل نفوذ در لایه‌ مرزی و نفوذ در سطح متخلخل جاذب را به‎عنوان مرحله کنترل‌کننده‌ شدت میزان جذب نشان می‌دهد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation and Mathematical Modeling of 4,6-DMDBT Adsorption on modified Activated Carbon

نویسندگان [English]

  • Jaafar Sasanipour
  • Ahmad Shariati
  • Masoud Aghajani
  • Mohammadreza Khosravi nikou
Gas Engineering Department, Ahwaz Faculty of Petroleum, Petroleum University of Technology, Ahwaz, Iran
چکیده [English]

In this study, equilibrium and kinetic adsorption of 4,6-DMDBT removal from model fuel, using an acid treated activated carbon is investigated. The equilibrium adsorption capability of this adsorbent is investigated. The equilibrium adsorption data fitted by Freundlich and To ̀th isotherms. The kinetic adsorption is also investigated by using two kinetic models: intraparticle diffusion model, and homogeneous surface diffusion model (HSDM). The results have shown that the experimental equilibrium adsorption data were fitted very well with both Freundlich and To ̀th isotherms. Homogeneous surface diffusion model, very well fitted kinetic experimental data. Mathematical modeling of the process using HSDM results in values of mass transfer and diffusion coefficients as 2.5558×10-2 m⁄min and 3.4056×10-6 m2⁄min for 4,6-DMDBT adsorption, respectively. HSDM also reveals that both boundary layer diffusion and diffusion into pores of adsorbent are present at the rate-limiting step of the adsorption process.
 

کلیدواژه‌ها [English]

  • Adsorption Equilibrium
  • Adsorption Kinetics
  • Homogeneous Surface Diffusion Model
  • Mass Transfer Coefficient
  • 4
  • 6-DMDBT

[1]. Xue M., Chitrakar R., Sakane K., Hirotsu T., Ooi K., Yoshimura Y., Feng Q. and Sumida N., “Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium,” J. Colloid Interface Sci., Vol. 285, No. 2, pp. 487–492, 2005. ##

[2]. Ahmed I. and Jhung S. H., “Adsorptive desulfurization and denitrogenation using metal-organic frameworks,” J. Hazard. Mater., Vol. 301, pp. 259–276, 2016.##

[3]. Jung B. K. and Jhung S. H., “Adsorptive removal of benzothiophene from model fuel, using modified activated carbons, in presence of diethylether,” Fuel, Vol. 145, pp. 249–255, 2015.##

[4]. Khan N. A., Kim C. M. and Jhung S. H., “Adsorptive desulfurization using Cu–Ce/metal–organic framework: Improved performance based on synergy between Cu and Ce,” Chem. Eng. J., Vol. 311, pp. 20–27, 2017. ##

[5]. Shi Y., Zhang X. and Liu G., “Activated carbons derived from hydrothermally carbonized sucrose: remarkable adsorbents for adsorptive desulfurization,” ACS Sustain. Chem. Eng., Vol. 3, No. 9, pp. 2237–2246, 2015.##

[6]. Ishaq M., Sultan S., Ahmad I., Ullah H., Yaseen M. and Amir A., “Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent,” J. Saudi Chem. Soc., Vol. 21, No. 2, pp. 143-151, 2015.##

[7]. Jin T., An S., Yang X., Hu J., Wang H., Liu H., Tian Z., Jiang D., Mehio N. and Zhu X., “Efficient adsorptive desulfurization by taskspecific porous organic polymers,” AIChE J., Vol. 62, No.6, pp. 1740-1746, 2016.##

[8]. نادری خمارتاجی م.، دهقانی م. و بنی‌شریف دهکردی ف.، "گوگردزدایی اکسایشی ترکیبات تیوفنی با کاتالیست پایه دار پل یاگزومتال دووسون،" مجله پژوهش نفت، دوره 26 ، شماره 91، صفحات 57-65 ,1395.##

[9]. فرزین‌نژاد ن.، شمس سولارى ا.، میران بیگی ع.، ترکستانی س. و طلاچى ح.، "مطالعه تجربی کارایی مایعات یونی در کاهش گوگرد بنزین،" مجله پژوهش نفت، دوره 21، شماره 66، صفحات 34-42، 1390.  ##

[10]. Wu X., Hu Y., Fang Z., Huang Z. and Dian L. E. I., “Ion adsorption components in liquid/solid systems,” J. Environ. Sci., Vol. 18, No. 6, pp. 1167–1175, 2006.##

[11]. Aljeboree A. M., Alshirifi A. N. and Alkaim A. F., “Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon,” Arab. J. Chem, Vol. 10, Supplement 2, pp. S3381-S3393, 2014.##

[12]. Ocampo-Pérez R., Abdel daiem M. M., Rivera-Utrilla J., Méndez-Díaz J. D. and Sánchez-Polo M., “Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon,” J. Colloid Interface Sci., Vol. 385, No. 1, pp. 174–182, 2012.##

[13]. Ho Y. S. and McKay G., “A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents,” Process Saf. Environ. Prot., Vol. 76, No. 4, pp. 332–340, 1998.##

[14]. Li Z., Jin S., Zhang R., Shao X., Zhang S., Jiang N., Jin M., Meng T. and Mu Y., “Adsorption of thiophene,dibenzothiophene, and 4,6-dimethyl dibenzothiophene on activated carbons, Ads.  Sci. & Tech., Vol. 34, No. 2, pp. 227–243, 2016.##

[15]. Do D. D., “Adsorption analysis: equilibria and kinetics,” Vol. 2. World Scientific, 1998.##

[16]. Ania C. O. and Bandosz T. J., “Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene”, Lang. J., Vol. 21, pp. 7752-7759, 2005##

[17]. Huang Y., Ma X., Liang G., Yan Y. and Wang S., “Adsorption behavior of Cr (VI) on organic-modified rectorite,” Chem. Eng. J., Vol. 138, No. 1, pp. 187–193, 2008.##

[18]. Boschi C., Maldonado H., Ly M. and Guibal E., “Cd (II) biosorption using lessonia kelps,” J. Colloid Interface Sci., Vol. 357, No. 2, pp. 487–496, 2011.##

[19]. Prasad R. K. and Srivastava S. N., “Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies,” Chem. Eng. J., Vol. 146, No. 1, pp. 90–97, 2009##

[20]. Moosavi E. S., Dastgheib S. A. and Karimzadeh R., “Adsorption of thiophenic compounds from model diesel fuel using copper and nickel impregnated activated carbons,” Energies J., Vol. 5, pp. 4233-4250, 2012.##

[21]. Bamufleh H. S., “Single and binary sulfur removal components from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2,” App. Cat. A: General, Vol. 365, pp. 153–158, 2009.##