حذف بنزن و تولوئن از آب شور به‎روش ترکیبی غشایی و نانوفتوکاتالیست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه محیط زیست، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل

2 گروه محیط زیست، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، ایران

چکیده

آلودگی منابع آب شور توسط هیدروکربن‎های نفتی، از مشکلات مهم در تامین آب سالم از منابع آب نامتعارف برای مصارف آشامیدنی و بهداشتی است. در این تحقیق به منظور تصفیه هیدروکربن‎های آروماتیک بنزن و تولوئن از آب شور از روش ترکیبی غشایی و نانوفتوکاتالیست در فرآیند اسمز مستقیم استفاده شد. میزان شار عبوری از غشا و تصفیه آلاینده محلول خوراک با سه نوع غشا مختلف (PESا، CTA و CTA اصلاح شده با TiO2) مورد بررسی قرار گرفت. به منظور بررسی مشخصات غشا آزمایشات SEM و EDX انجام گرفت. براساس نتایج به‎دست آمده، میزان حذف هریک از آلاینده‎‎های تولوئن و بنزن در روش ترکیبی به‌ترتیب 74 و 41% مشاهده گردید و همچنین استفاده از غشا اصلاح شده با ذرات نانو فتوکاتالیست علاوه‎بر کاهش گرفتگی غشا و افزایش شار عبوری، موجب بهبود راندمان حذف آلاینده‎های بنزن و تلوئن در محلول خوراک شده است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Benzene and Toluene Removal from Saline Water with Coupled Membrane Process and Nanophotocatalyst

نویسندگان [English]

  • maryam taghizadeh 1
  • Daryoush Yousefi Kebria 2
  • Farhad Qaderi 2
1 PhD student in Civil and Environmental Engineering, Babol University of Technology, Iran
2 Department of Environmental Engineering, Engineering Faculty, Babol Noshirvani University of Technology, Iran
چکیده [English]

Water resources pollution with petroleum hydrocarbons is one of the most important problems in clean water supply for drinking and sanitary purposes. In this study, the simultaneous reduction of salinity and PAH (benzene and toluene) from the contaminated water has been investigated with membrane process (Forward Osmosis) coupled with photocatalysis. The amount of membrane flux, and the treatment efficiency of toluene and benzene through three various membrane including PES, CTA and CTA/TiO2 have been investigated. Based on the results from three types of membrane, the amount of toluene and benzene removal in combined method has been seen 74% and 41% respectively. Also, membrane surface modification with nano-photo catalyst particles has reduced membrane fouling; moreover, the membrane surface has increased membrane flux, and removed benzene and toluene from feed water.
 

کلیدواژه‌ها [English]

  • Polycyclic Aromatic Hydrocarbon
  • Salty Water
  • Membrane Process
  • Nanophotocatalyst
  • Forward Osmosis
[1]. Abdel Shafy H. I. and Mansour M. S. M., “A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation,” Egypt. J. Pet., Vol. 25, No. 1, pp. 107–123, 2016.##
[2]. Luo Z., Wei C., He N., Sun Z., Li H. and Chen D., “Correlation between the photocatalytic degradability of PAHs over Pt/TiO2-SiO2 in water and their quantitative molecular structure,” Journal of Nanomaterials, Vol. 2015, Article ID 284834, pp. 11, 2015.##
[3]. Ukiwe L. N., Egereonu U. U., Njoku P. C., Nwoko C. I. A. and Allinor J. I., “Polycyclic aromatic hydrocarbons degradation techniques: a review,” International Journal of Chemistry, Vol. 5, No. 4, pp. 43–55, 2013.##
[4]. Guanghui G. U. O., Fengchang W. U., Hongping H. E. and. Ruiqing Z, “Distribution characteristics and ecological risk assessment of PAHs in surface waters of China,” Vol. 55, No. 6, pp. 914–925, 2012.##
[5]. Maskaoui K. and Hu A. E. Z., “Contamination and ecotoxicology risks of polycyclic aromatic hydrocarbons in shantou coastal waters, China,” Bulletin of Environmental Contamination and Toxicology, Vol. 82, Issue 2, pp. 172–178, 2009.##
[6]. Dórea H. S., Bispo J. R. L., Aragão K. A. S., Cunha B. B., Navickiene S., Alves J. P. H., Romão L. P. C. and Garcia C. A. B., “Analysis of BTEX , PAHs and metals in the oilfield produced water in the State of Sergipe , Brazil,” Microchemical Journal, Vol. 85, pp. 234–238, 2007.##
[7]. Li Y., Liu J., Cao Z., Lin C. and Yang Z., “Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China,” US National Library of Medicine National Institutes of Health, pp. 1–13, 2010.##
[8]. شهرکی م. ه.، ''ارزیابی مقایسه‌ای تاثیر نوع ماده اسمزی در فرآیند نمک‎زدایی از آب به‎روش اسمز مستقیم (بررسی پایلوتی در اندازه آزمایشگاهی)،''##
[9]. Motsa M. M., Mamba B. B., Haese A. D., Hoek E. M. V. and Verliefde A. R. D., “Organic fouling in forward osmosis membranes: The role of feed solution chemistry and membrane structural properties,” J. Memb. Sci., Vol. 460, pp. 99–109, 2014.##
[10]. Xie M., Nghiem L. D., Price W. E. and Elimelech M., “Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis,” Water Res., Vol. 46, No. 8, pp. 2683–2692, 2012.##
[11]. Minier Matar J., Hussain A., Janson A., Wang R., Fane A. G. and Adham S., “Application of forward osmosis for reducing Volume of produced/Process water from oil and gas operations,” Desalination, Vol. 376, pp. 1–8, 2015.##
[12]. Abousnina R. M. and Nghiem L. D., “Removal of dissolved organics from produced water by forward osmosis,” Desalin. Water Treat., Vol. 52, No. 4–6, pp. 570–579, 2014.##
[13]. Phuntsho S., Sahebi S., Majeed T., Lotfi F., Kim J. E. and Shon H. K., “Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process,” Chem. Eng. J., Vol. 231, pp. 484–496, 2013.##
[14]. Zhao S., Minier matar J., Chou S., Wang R., Gordon A. and Adham S., “Gas fi eld produced / process water treatment using forward osmosis hollow fi ber membrane: Membrane fouling and chemical cleaning,” DES, Vol. 402, pp. 143–151, 2017.##
15]. Emadzadeh D., Lau W. J., Matsuura T., Rahbari Sisakht M. and Ismail A. F., “A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination,” Chem. Eng. J., Vol. 237, pp. 70–80, 2014. ##
[16]. Ge Q., Ling M. and Chung T., “Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future,” J. Memb. Sci., Vol. 442, pp. 225–237, 2013.##
[17]. Garcia castello E. M., Mccutcheon J. R. and Elimelech M., “Performance evaluation of sucrose concentration using forward osmosis,” J. Memb. Sci., Vol. 338, pp. 61–66, 2009.##
[18]. Liu P., Gao B., Kyong H., Ma D., Rong H., Zhao P. and Zhao S., “Water fl ux behavior of blended solutions of ammonium bicarbonate mixed with eight salts respectively as draw solutions in forward osmosis,” DES, Vol. 353, pp. 39–47, 2014.##
[19]. Vrijenhoek E. M., Hong S. and Elimelech M., “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes,” Journal of Membrane Science, Vol. 188, pp. 115–128, 2001.##
[20]. Mccutcheon J. R. and Elimelech M., “Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis,” Journal of Membrane Science, Vol. 284, pp. 237–247, 2006.##
[21]. Tiraferri A., Yip N. Y., Straub A. P. and Castrillon S. R., “A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes,” J. Memb. Sci., Vol. 444, pp. 523–538, 2013.##
[22]. Motsa M. M., Mamba B. B., Haese A. D., Hoek E. M. V. and Verliefde A. R. D., “Organic fouling in forward osmosis membranes: The role of feed solution chemistry and membrane structural properties,” J. Memb. Sci., Vol. 460, pp. 99–109, 2014.##
[23]. Coday B. D., Almaraz N. and Cath T. Y., “Forward osmosis desalination of oil and gas wastewater: Impacts of membrane selection and operating conditions on process performance,” J. Memb. Sci., Vol. 488, pp. 40–55, 2015.##
[24]. Dabaghian Z., Rahimpour A. and Jahanshahi M., “Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination,” DES, Vol. 381, pp. 117–125, 2016.##
[25]. Achilli A., Cath T. Y. and Childress A. E., “Selection of inorganic-based draw solutions for forward osmosis applications,” J. Memb. Sci., Vol. 364, No. 1–2, pp. 233–241, 2010.##
[26]. Amini M., Jahanshahi M. and Rahimpour A., “Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes,” J. Memb. Sci., Vol. 435, 15 May 2013, 2013.##
[27]. Ng H. Y., Tang W. and Wong W. S., “Performance of forward (direct) osmosis process: Membrane structure and transport phenomenon,” Environ. Sci. Technol., Vol. 40, No. 7, pp. 2408–2413, 2006.##
[28]. Nguyen H. T., Nguyen N. C., Chen S., Li C., Hsu H. and Wu S., “Innovation in draw solute for practical zero salt reverse in forward osmosis desalination,” End.Eng.Chem. Res., Vol. 54, No. 23, pp 6067–6074, 2015.##
[29]. Duan J., Litwiller E., Choi S. and Pinnau I., “Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration,” J. Memb. Sci., Vol. 453, pp. 463–470, 2014.##
[30]. Nguyen H. T., Chen S., Nguyen N. C., Ngo H. H., Guo W. and Li C., “Exploring an innovative surfactant and phosphate-based draw solution for forward osmosis desalination,” J. Memb. Sci., Vol. 489, pp. 212-219, 1 Sep tember 2015, 2015.##
[31]. Thi H., Cong N., Chen S., Hao H., Guo W. and Li C., “Science of the total environment a new class of draw solutions for minimizing reverse salt fl ux to improve forward osmosis desalination,” Sci. Total Environ., Vol. 538, pp. 129–136, 2015.##
[32]. Liu F, Xu Y, Zhu B. K., zhang F. and Zhu P. “Preparation of hydrophilic and fouling resistant poly (vinylidene fluoride) hollow fiber membranes,’’ J. Membr. Sci. Vol. 345, pp. 331-339. 2009.##
[33]. Yan L., Li Y.S., Xiang C.B. and Xianda S., “Effect of ano-sized Al2O3 particle addition on PVDF ultrafiltration membrane performance,’’ J. Membr, Sci, Vol. 276. pp.162-167. 2006.##
[34]. Vatanpour V., Madaeni S. S., Khataee A. R., Salehi E., Zinadini S. and Monfared H. A., “TiO2 embedded mixed matrix PES nanocomposite membranes:influence of different size and types of nanoparticles on antifouling and performance, Desalination. Vol. 292. pp. 19-29. 2012.##
[35]. Hashim N. A., Liu Y. and Li K., “Preparation of PVDF hollow fiber membranes using SiO2 particles: the effect of acid and alkali treatment on the membrane performances, Ind. Eng. Chem. Res. Vol. 50. pp. 3035-3040. 2011.##
[36]. Han M. J., Barona G. N. B. and Jung B., “Effect of surface charge on hydrophilically modified poly (vinylidene fluoride) membrane for microfiltration,’’ Desalination. Vol. 270. pp. 76-83. 2011.##
[37]. Safarpour M., Vatanpour V. and Khataee A., “Preparation and characterization of graphene oxide /TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance,’’ Desalination., Vol. 393, pp. 65-78. 2016. ##
[38]. Hegab H., ElMekawy A., Barclay T., Michelmore A., Zou L., Saint C. and Ginic Markovic M., “Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation,’’ Desalination, Vol. 385, pp.126-137. 2016.##
[39]. Li J. f., Xu Z., Yang H., Yu L. and Liu., “Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane,’’ Appl. Surf. Sci, Vol 255, pp. 4725-4732. 2009.##
[40]. Wu G., Gan S., Cui L. and Xu Y., “Preparation and characterization of PES/TiO composite membranes,’’ Appl. Surf. Sci., Vol. 25, pp. 7080-7086, 2008.##
[41]. Sirinupong T., Youravong W., Tirawat D., Lau W.J., Lai G.S. and Ismail A. F., “Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substract for forward osmosis,” Arab. J. Chem., http:// dx.doi.org/10.1016/j.arabjc. 05.006 (in press), Issue 128, 2017.##
[42]. Xu C., Cui A., Xu Y. and Fu X., “Graphene oxide-TiO2 composite filtration membrane and their potential application for water purification,’’ Carbon , Vol. 62, pp. 465-471, 2013.##
[43]. Gao P., Liu Z., Tai M., Sun D. D. and Ng W., “Multifunctional graphene oxide-TiO2 microsphere heirarchical membrane for clean water production, Appl. Catal. B:Environ, Vol. 138, pp. 17-25, 2013.##
[44]. Gao Y., Hu M. and Mi B., “Membrane surface modification with TiO2 graphene oxide for enhanced photocatalytic performance, J. Memb. Sci., Vol. 455, pp. 349–356, 2014.##
[45]. Safarpour M., Vatanpour V., Khataee A. and Esmaeili M., “Development of a novel high flux and douling-re sistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2,’’ Sep.Purif.Technol., Vol. 154, pp. 96-107. 2015.##
[46]. Nguyen A., Zou L. and Priest C., “Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane, J. Memb. Sci., Vol. 454, pp. 264–271, 2014.##
[47]. Taylor P., Amini M., Rahimpour A. and Jahanshahi M., “Forward osmosis application of modified TiO2 - polyamide thin film nanocomposite membranes,” Desalin Water Treat, pp.1-11, August, 2015.##
[48]. Holloway R. W., Maltos R., Van J. and Cath T. Y., “Mixed draw solutions for improved Forward Osmosis performance,” J. Memb. Sci., Vol. 491, pp. 121-131, 1 October 2015.##
[49]. Singh P., Borthakur A., Srivastava N., Singh R., Tiwary D. and Mishara P. K., “Photocatalytic Degradation of Benzene and Toluene in Aqueous Medium,” Pollution, Vol. 2, No. 2, pp. 115–129, 2016.##
[50]. Janus M., Kusiak Nejman E. and Morawski A. W., “Determination of the photocatalytic activity of TiO2 with high adsorption capacity,” React. Kinet. Mech. Catal., Vol. 103, no. 2, pp. 279–288, 2011.##
[51]. Gao Y., Hu M. and Mi B., “Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance,” J. Memb. Sci., Vol. 455, pp. 349–356, 2014.##
[52]. Liu B., Chen B., Zhang B. Y., Jing L., Zhang H. and Lee K., “Photocatalytic degradation of polycyclic aromatic hydrocarbons in offshore produced water: effects of water matrix,” J. Environ. Eng., No. May, pp. 4016054, 2016.##