سنتز ترموشیمیایی اسپینل سرامیکی Mg-Al به‎عنوان پایه نانوکاتالیست MgO/MgAl2O4 برای تبدیل روغن گیاهی به سوخت سبز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران/مرکز تحقیقات راکتور و کاتالیست، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

2 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران/ مرکز تحقیقات راکتور و کاتالیست، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

10.22078/pr.2018.2905.2355

چکیده

روش ساده و اقتصادی ترموشیمیایی برای اولین بار جهت سنتز اسپینل MgAl2O4 استفاده شد. بعد از نشاندن فاز فعال MgO به‎روش تلقیح برروی سطح اسپینل، نانوکاتالیست جدید MgO/MgAl2O4 با موفقیت برای واکنش تولید بیودیزل به‎عنوان یک سوخت سبز مورد استفاده قرار گرفت. نانوکاتالیست آماده‎شده توسط آنالیزهای
X-Ray Diffraction (XRD) Field Emission Scanning Electron Microscopy (FESEM) ،Energy Dispersive X-Ray (EDX-Dot Mapping) ،Brunauer–Emmett–Teller & Barrett-Joyner-Halenda (BET-BJH) و Fourier Transform Infrared (FTIR)
بررسی شد و در نهایت برای واکنش تولید بیودیزل در شرایط C°110، 3% وزنی کاتالیست نسبت به خوراک، نسبت الکل به روغن 12 و زمان hr 3 مورد استفاده قرار گرفت. نتایج به‎دست آمده از آنالیز XRD سنتز موفقیت آمیز اسپینل MgAl2O4 را تایید کرد و تصاویر FESEM نمونه سنتز شده ریخت‎شناسی یکنواخت با تشکیل خوشه‌ها (Clusters) را نشان داد. آنالیز BET-BJH نشان داد که نمونه سنتز شده دارای اندازه قطر حفرات و سطح ویژه به ترتیب برابر nm 9/5 و m2/g 76/84 است که مقادیر مناسبی برای واکنش تولید بیودیزل است. نتایج این آنالیزها تطابق خوبی با نتایج حاصل از عملکرد نانوکاتالیست سنتز شده در واکنش تولید بیودیزل (به‎عنوان سوخت سبز) داشت به‎طوری‎که این نمونه درصد تبدیل، بسیار مناسب 6/92% را حاصل کرد. همچنین نمونه سنتز شده در شرایط واکنشی اشاره شده، بعد از شش بار استفاده درصد تبدیل حدود 64% را حاصل کرد. البته قابل ذکر است که درصد تبدیل در تکرارهای سوم تا ششم تقریبا ثابت باقی ماند. نتایج این مقاله نشان داد که روش ترموشیمیایی- تلقیح علاوه‎بر سادگی و کم هزینه بودن، موجب سنتز کاتالیستی با مشخصات مطلوب و قابلیت صنعتی شدن جهت تولید سوخت سبز بیودیزل می‌شود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermochemical Synthesis of Mg-Al Ceramic Spinel as Support for MgO/MgAl2O4 Nanocatalyst Toward Conversion of Vegetable Oil to Green Fuel

نویسندگان [English]

  • Behgam Rahmani 1
  • Mohammad Haghighi 2
1 Chemical Engineering Faculty, Sahand University of Technology, Tabriz, IranReactor and Catalysis Research Center (RCRC), Sahand University of Technology, Tabriz, Iran
2 Chemical Engineering Faculty, Sahand University of Technology, Tabriz, IranReactor and Catalysis Research Center (RCRC), Sahand University of Technology, Tabriz, Iran
چکیده [English]

A simple and economical thermochemical method was used for synthesis of MgAl2O4 spinel for the first time. After dispersion of MgO over the spinel surface as active phase, the new MgO/MgAl2O4 nanocatalyst was successfully used for the biodiesel production as a green fuel. The prepared nanocatalyst was analyzed by XRD, FESEM, EDX-Dot Mapping, BET-BJH and FTIR analyses. Finally, the synthesized sample was used for the biodiesel production for reaction conditions at 110 °C, catalyst to the feed ratio being 3%wt., molar ratio of alcohol to oil equals to be 12 for 3 hours reaction time. The results of the XRD analysis confirmed the successful synthesis of  MgAl2O4 spinel and the FESEM images of the synthesized sample showed a uniform morphology with the formation of clusters. The BET-BJH analysis has shown that the synthesized sample had a pore size diameter and surface area of 5.9 nm and 84.76 m2/g respectively which are appropriate for the biodiesel production reaction. The results of these analyzes were in good agreement with the results of the synthesized nanocatalyst activity in the biodiesel production reaction, so that this sample achieved a good conversion of 92.6%. Also, after six times usage in the mentioned reaction conditions, the conversion for the synthesized sample was about 64%. However, it should be noted that the conversion remained almost constant in the third to sixth cycles. The results of this paper has shown that thermochemical-impregnation method, in addition to its simplicity and low cost, leads to synthesis of catalyst with favorable characteristics and industrialization capability.
 

کلیدواژه‌ها [English]

  • Al-Mg Ceramic Spinel
  • MgO/MgAl2O4 Nanocatalyst
  • Thermochemical Synthesis
  • Vegetable Oil
  • Green Fuel

[1]. Hasan M. M. and Rahman M. M., “Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review,” Renewable and Sustainable Energy Reviews, Vol. 74, pp. 938-948, 2017. ##

[2]. Mahmudul H. M., Hagos F. Y., Mamat R., Adam A. A., Ishak W. F. W. and Alenezi R., “Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review,” Renewable and Sustainable Energy Reviews, Vol. 72, pp. 497-509, 2017.##

[3]. Kumar A., Shukla S. K. and Tierkey J. V., “A review of research and policy on using different biodiesel oils as fuel for C.I. engine,” Energy Procedia, Vol. 90, pp. 292-304, 2016.##

[4]. Zhou Q., Zhang H., Chang F., Li H., Pan H., Xue W., Hu D.-Y. and Yang S., “Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil,” Journal of Industrial and Engineering Chemistry, Vol. 31, pp. 385-392, 2015.##

[5]. Liu H., Guo H. S., Wang X. j., Jiang J. Z., Lin H., Han S. and Pei S. P., “Mixed and ground KBr-impregnated calcined snail shell and kaolin as solid base catalysts for biodiesel production,” Renewable Energy, Vol. 93, pp. 648-657, 2016.##

[6]. Torres-Rodríguez D. A., Romero-Ibarra I. C., Ibarra I. A. and Pfeiffer H., “Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst,” Renewable Energy, Vol. 93, pp. 323-331, 2016.##

[7]. Luque R., Lovett J. C., Datta B., Clancy J., Campelo J. M. and Romero A. A., “Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview,” Energy & Environmental Science, Vol. 3, No. 11, pp. 1706-1721, 2010.##

[8]. Luque R., “Algal biofuels: the eternal promise?,” Energy & Environmental Science, Vol. 3, No. 3, pp. 254-257, 2010.##

[9]. Roschat W., Siritanon T., Kaewpuang T., Yoosuk B.,Promarak V., “Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method,” Bioresource Technology, Vol. 209, pp. 343-350, 2016.##

[10]. Kwon E. E., Yi H. and Jeon Y. J., “Mechanistic investigation into water tolerance of non-catalytic biodiesel conversion,” Applied Energy, Vol. 112, pp. 388-392, 2013. ##

[11]. Lotero E., Liu Y., Lopez D. E., Suwannakarn K., Bruce D. A. and Goodwin J. G., “Synthesis of biodiesel via acid catalysis,” Industrial & Engineering Chemistry Research, Vol. 44, No. 14, pp. 5353-5363, 2005.##

[12]. Behgam Rahmani V., Saghatoleslami N., Nayebzadeh H. and Maskooki A., “Preparation of nano-size al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity,” Chemical and Biochemical Engineering Quarterly, Vol. 26, No. 2, pp. 71-77, 2012.##

[13]. Vieira S. S., Magriotis Z. M., Graça I., Fernandes A., Ribeiro M. F., Lopes J. M. F. M., Coelho S. M., Santos N. A. V. and Saczk A. A., “Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO4−2/La2O3,” Catalysis Today, Vol. 279, pp. 267-273, 2017.##

[14]. Alhassan F. H., Rashid U. and Taufiq-Yap Y. H., “Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3_MnO_SO4−2/ZrO2 nanoparticle solid catalyst,” Fuel, Vol. 142, pp. 38-45, 2015.##

[15]. Nayebzadeh H., Saghatoleslami N., Haghighi M. and Tabasizadeh M., “Influence of fuel type on microwave-enhanced fabrication of KOH/Ca12Al14O33 nanocatalyst for biodiesel production via microwave heating,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 75, pp. 148-155, 2017.##

[16]. Liu H., Su L., Shao Y. and Zou L., “Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst Fuel,” Vol. 97, pp. 651-657, 2012. ##

[17]. Ding Y., Sun H., Duan J., Chen P., Lou H. and Zheng X., “Mesoporous Li/ZrO2 as a solid base catalyst for biodiesel production from transesterification of soybean oil with methanol,” Catalysis Communications, Vol. 12, No. 7, pp. 606-610, 2011.##

[18]. Xia S., Guo X., Mao D., Shi Z., Wu G. and Lu G., “Biodiesel synthesis over the CaO-ZrO2 solid base catalyst prepared by a urea-nitrate combustion method,” RSC Advances, Vol. 4, No. 93, pp. 51688-51695, 2014.#3

[19]. Kutálek P., Čapek L., Smoláková L. and Kubička D., “Aspects of Mg-Al mixed oxide activity in transesterification of rapeseed oil in a fixed-bed reactor,” Fuel Processing Technology, Vol. 122, pp. 176-181, 2014.##

[20]. Atadashi I. M., Aroua M. K., Abdul Aziz A. R. and Sulaiman N. M. N., “The effects of catalysts in biodiesel production: A review,” Journal of Industrial and Engineering Chemistry, Vol. 19, No. 1, pp. 14-26, 2013.##

[21]. Avhad M. R. and Marchetti J. M., “A review on recent advancement in catalytic materials for biodiesel production,” Renewable and Sustainable Energy Reviews, Vol. 50, pp. 696-718, 2015. ##

[22]. Umdu E. S., Tuncer M. and Seker E., “Transesterification of nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts,” Bioresource Technology, Vol. 100, No. 11, pp. 2828-2831, 2009.##

[23]. Mahdavi V. and Monajemi A., “Optimization of operational conditions for biodiesel production from cottonseed oil on CaO–MgO/Al2O3 solid base catalysts,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, No. 5, pp. 2286-2292, 2014.##

[24]. Chen G., Shan R., Li S. and Shi J., “A biomimetic silicification approach to synthesize CaO–SiO2 catalyst for the transesterification of palm oil into biodiesel,” Fuel, Vol. 153, pp. 48-55, 2015.##

[25]. Keane M. A., “Ceramics for catalysis,” Journal of Materials Science, Vol. 38, No. 23, pp. 4661-4675, 2003.##

[26]. Liu H., Dai X., Wang K., Yan Z. and Qian L., “Highly efficient catalysts of Mn1−xAgxCo2O4 spinel oxide for soot combustion,” Catalysis Communications, Vol. 101, pp. 134-137, 2017. ##

[27]. Liu D., Mo X., Li K., Liu Y., Wang J. and Yang T., “The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell,” Journal of Power Sources, Vol. 359, pp. 355-362, 2017.##

[28]. Sankaranarayanan T. M., Shanthi R. V., Thirunavukkarasu K., Pandurangan A. and Sivasanker S., “Catalytic properties of spinel-type mixed oxides in transesterification of vegetable oils,” Journal of Molecular Catalysis A: Chemical, Vol. 379, pp. 234-242, 2013.##

[29]. Mierczynski P., Chalupka K. A., Maniukiewicz W., Kubicki J., Szynkowska M. I. and Maniecki T. P., “SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil,” Applied Catalysis B: Environmental, Vol. 164, pp. 176-183, 2015.##

[30]. Hashemzehi M., Saghatoleslami N. and Nayebzadeh H., “A study on the structure and catalytic performance of ZnxCu1-xAl2O4 catalysts synthesized by the solution combustion method for the esterification reaction,” Comptes Rendus Chimie, Vol. 19, No. 8, pp. 955-962, 2016.##

[31]. Foletto E. L., Jahn S. L. and Muniz Moreira R. d. F. P., “Synthesis of high surface area MgAl2O4 nanopowder as adsorbent for leather dye removal,” Separation Science and Technology, Vol. 44, No. 9, pp. 2132-2145, 2009.##

[32]. Navaei Alvar E., Rezaei M., Navaei Alvar H., Feyzallahzadeh H. and Yan Z. F., “Synthesis of nanocrystalline MgAl2O4 spinel by using ethylene diamine as precipitation agent,” Chemical Engineering Communications, Vol. 196, No. 11, pp. 1417-1424, 2009.##

[33]. Graziela Guzi de MoraesOliveira A. P. N. d., “Synthesis of the MgAl2O4 spinel obtained via combustion reaction using glycerine from the biodiesel as a fuel for producing cellular ceramics,” Materials Science Forum, Vol. 820, pp. 96-101, 2015.##

[34]. Mathew C. T., Vidya S., Koshy J., Solomon S. and Thomas J. K., “Enhanced infrared transmittance properties in ultrafine MgAl2O4 nanoparticles synthesised by a single step combustion method, followed by hybrid microwave sintering,” Infrared Physics & Technology, Vol. 72, pp. 153-159, 2015.##

[35]. Saberi A., Golestani Fard F., Sarpoolaky H., Willert-Porada M., Gerdes T. and Simon R., “Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate–citrate combustion route,” Journal of Alloys and Compounds, Vol. 462, No. 1–2, pp. 142-146, 2008.##

[36]. Deganello F., Marcì G. and Deganello G., “Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach,” Journal of the European Ceramic Society, Vol. 29, No. 3, pp. 439-450, 2009.##

[37]. Barakos N., Pasias S. and Papayannakos N., “Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst,” Bioresource Technology, Vol. 99, No. 11, pp. 5037-5042, 2008.##

[38]. Brito A., Borges M. E., Garín M. and Hernández A., “Biodiesel production from waste oil using Mg−Al layered double hydroxide catalysts,” Energy & Fuels, Vol. 23, No. 6, pp. 2952-2958, 2009.##

[39]. Čapek L., Kutálek P., Smoláková L., Hájek M., Troppová I. and Kubička D., “The effect of thermal pre-treatment on structure, composition, basicity and catalytic activity of Mg/Al Mixed oxides,” Topics in Catalysis, Vol. 56, No. 9-10, pp. 586-593, 2013.##

[40]. Hájek M., Kutálek P., Smoláková L., Troppová I., Čapek L., Kubička D., Kocík J. and Thanh D. N., “Transesterification of rapeseed oil by Mg–Al mixed oxides with various Mg/Al molar ratio,” Chemical Engineering Journal, Vol. 263, pp. 160-167, 2015.##

[41]. Silva C. C. C. M., Ribeiro N. F. P., Souza M. M. V. M. and Aranda D. A. G., “Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst,” Fuel Processing Technology, Vol. 91, No. 2, pp. 205-210, 2010.##

[42]. Prados C. P., Rezende D. R., Batista L. R., Alves M. I. R. and Antoniosi Filho N. R., “Simultaneous gas chromatographic analysis of total esters, mono-, di- and triacylglycerides and free and total glycerol in methyl or ethyl biodiesel,” Fuel, Vol. 96, pp. 476-481, 2012.##

[43]. Rahmani V.and Haghighi B. M., “Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance,” Energy Conversion and Management, Vol. 134, pp. 290-300, 2017. ##

[44]. Scherrer P., “Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Vol. 26, pp. 98-100, 1918. ##

[45]. Granados M. L., Poves M. D. Z., Alonso D. M., Mariscal R., Galisteo F. C., Moreno-Tost R., Santamaría J. and Fierro J. L. G., “Biodiesel from sunflower oil by using activated calcium oxide,” Applied Catalysis B: Environmental, Vol. 73, No. 3-4, pp. 317-326, 2007.##

[46]. Coenen J. W. E., “Catalytic hydrogenation of fatty oils,” Industrial & Engineering Chemistry Fundamentals, Vol. 25, pp. 43-52, 1986. ##

[47]. Abramoff M. D., Magalhaes P. J. and Ram S. J., “Image processing with imageJ,” Biophotonics International, Vol. 11, No. 7, pp. 36−42, 2004. ##

[48]. Motevalian Seyedi A., Haghighi M. and Rahemi N., “Significant influence of cutting-edge plasma technology on catalytic properties and performance of CuO-ZnO-Al2O3-ZrO2 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production,” Ceramics International, Vol. 43, No. 8, pp. 6201-6213, 2017.##

[49]. Bagherzadeh S. B. and Haghighi M., “Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming,” Energy Conversion and Management, Vol. 142, pp. 452-465, 2017. ##

[50]. Yosefi L., Haghighi M., Allahyari S., Shokrani R. and Ashkriz S., “Abatement of toluene from polluted air over Mn/Clinoptilolite–CeO2 nanopowder: Impregnation vs. ultrasound assisted synthesis with various Mn-loading,” Advanced Powder Technology, Vol. 26, No. 2, pp. 602-611, 2015.##

[51]. Charghand M., Haghighi M., Saedy S. and Aghamohammadi S., “Efficient hydrothermal synthesis of nanostructured SAPO-34 using ultrasound energy: physicochemical characterization and catalytic performance toward methanol conversion to light olefins,” Advanced Powder Technology, Vol. 25, No. 6, pp. 1728-1736, 2014. ##

[52]. Rahmani V. and Haghighi B. M., “Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance,” Energy Conversion and Management, Vol. 126, pp. 362-372, 2016. ##

[53]. Rahmani F., Haghighi M. and Mahboob S., “CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability,” Ultrasonics Sonochemistry, Vol. 33, pp. 150-163, 2016. ##

[54]. Ajamein H., Haghighi M., Shokrani R. and Abdollahifar M., “On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio,” Journal of Molecular Catalysis A: Chemical, Vol. 421, pp. 222-234, 2016. ##

[55]. Ahmadi F., Haghighi M. and Ajamein H., “Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming,” Journal of Molecular Catalysis A: Chemical, Vol. 421, pp. 196-208, 2016.##

[56]. Khoshbin R. and Haghighi M., “Direct syngas to DME as a clean fuel: the beneficial use of ultrasound for the preparation of CuO–ZnO–Al2O3/HZSM-5 nanocatalyst,” Chemical Engineering Research and Design, Vol. 91, No. 6, pp. 1111-1122, 2013. ##

[57]. Jamalzadeh Z., Haghighi M. and Asgari N., “Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures,” Frontiers of Environmental Science & Engineering, Vol. 7, No. 3, pp. 365-381, 2013.##

[58]. Asgari N., Haghighi M. and Shafiei S., “Synthesis and physicochemical characterization of nanostructured CeO2/clinoptilolite for catalytic total oxidation of xylene at low temperature,” Environmental Progress & Sustainable Energy, Vol. 32, No. 3, pp. 587-597, 2013.##

[59]. Sharifi M., Haghighi M. and Abdollahifar M., “Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance,” Materials Research Bulletin, Vol. 60, pp. 328-340, 2014. ##

[60]. Zarei M., Rezaei M. and Meshkani F., “Preparation of mesoporous nanocrystalline Ni-MgAl2O4 catalysts by sol-gel combustion method and its applications in dry reforming reaction,” Advanced Powder Technology, Volume 27, Issue 5, pp. 1963-1970, September 2016.##

[61]. Allahyari S., Haghighi M., Ebadi A. and Hosseinzadeh S., “Ultrasound assisted co-precipitation of nanostructured CuO–ZnO–Al2O3 over HZSM-5: Effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME,” Ultrasonics Sonochemistry, Vol. 21, No. 2, pp. 663-673, 2014. ##

[62]. Li F. T., Zhao Y., Liu Y., Hao Y. J., Liu R. h. and Zhao D. S., “Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders,” Chemical Engineering Journal, Vol. 173, No. 3, pp. 750-759, 2011.##

[63]. Boroujerdnia M. and Obeydavi A., “Synthesis and characterization of NiO/MgAl2O4 nanocrystals with high surface area by modified sol-gel method,” Microporous and Mesoporous Materials, Vol. 228, pp. 289-296, 2016. ##

[64]. Liu Y., Lotero E., Goodwin Jr J. G. and Mo X., “Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts,” Applied Catalysis A: General, Vol. 331, pp. 138-148, 2007.##