بهبود تولید یک میدان نفتی با استفاده از مدل‌سازی یکپارچه و کنترل بهینه

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

10.22078/pr.2019.3627.2653

چکیده

با تولید پیوسته از یک مخزن نفتی، فشار مخزن و دبی تولیدی کاهش پیدا می‌کنند. اگر نسبت گاز به نفت تولیدی، فشار جریان ته‌چاهی و ویژگی‌های سیال مخزن مناسب باشند، با استفاده از فرازآوری مصنوعی با گاز، دبی تولیدی افزایش پیدا خواهد کرد. در فرآیند فرازآوری مصنوعی با گاز، شرایط مخزن، چاه و تأسیسات سطح‌الارضی به‌صورت پیوسته تغییر می‌کنند؛ بنابراین باید بر عملیات تزریق گاز نظارت داشت و شرایط تزریق را متناسب با این تغییرات، به‌روزرسانی کرد تا بهینه‌ترین دبی تولیدی به‌دست آید و کارایی یک میدان هیدروکربنی را پیش‌بینی کرد. یکی از مشکلاتی که در فرآیند فرازآوری با گاز اتفاق می‌افتد، ناپایداری است. ناپایداری باعث کاهش تولید نفت و آسیب رساندن به تأسیسات می‌گردد. همچنین با توجه به محدودیت حجم گاز موجود جهت تزریق بایستی تخصیص و کنترل گاز تزریق‌شده در بین چاه‌های تولیدی به‌گونه‌ای باشد که تولید در شرایط بهینه انجام شود. در این مطالعه مخزن نفتی با استفاده از نرم‌افزار Eclipse شبیه‌سازی شد و سپس به کمک نرم‌افزار PRosPER مدل‌سازی چاه‌های تولیدی و شبکه خطوط لوله جریانی سطح‌الارضی انجام شد. در نهایت با استفاده از نرم‌افزار MATLAB، اتصال مدل‌های مخزن، چاه و شبکه خطوط لوله جریانی به‌منظور ایجاد مدل یکپارچه و تخصیص بهینه گاز تزریقی بین چاه‌ها به کمک الگوریتم ژنتیک انجام شد. طبق سناریو‌های مختلف، گاز تزریقی بین چاه‌ها توزیع شد. میزان تولید نفت و درآمد حاصل از هر سناریو ثبت شد. طبق نتایج به‌دست‌آمده، استفاده از مدل یکپارچه بهره‌برداری همراه با سیستم کنترل بهینه در فرآیند فرازآوری با گاز در مقایسه با شرایط تولید طبیعی مخزن مورد مطالعه، باعث افزایش 86/224% درآمد می‌شود. همچنین در نظر گرفتن ناپایداری به‌عنوان محدودیت در سیستم کنترل بهینه تزریق گاز مدل یکپارچه بهره‌برداری باعث کاهش 93/2% درآمد حاصل‌شده از مخزن می‌شود. اما در بلند‌مدت سبب کاهش آسیب به تأسیسات پایین‌دستی میدان نفتی می‌گردد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production Enhancement of an Oil Field using Integrated Modeling and Optimal Control

نویسندگان [English]

  • Amir Gharcheh Beydokhti
  • Ehsan Khamehchi
Depertment of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

By continuous production of a hydrocarbon reservoir, the reservoir pressure and production rate decreases. If the gas oil ratio, flowing bottomhole pressure and reservoir fluid properties are appropriate, the production rate will increase with the use of the artificial gas lift. Gas lift operation must be monitored and injection conditions have to be updated with respect to the condition variation in order to obtain the optimum production rate and predict the performance of a hydrocarbon field. One of the problems which occurs in gas lift operations is the instability phenomenon. This phenomenon reduces oil production and damages facilities. Also, because of available lift gas limitation, the injection gas must be allocated among producing wells in a way to produce in an optimum condition and prevent instability. In the current study, Eclipse was used to simulate reservoir. Then, wells and surface flow pipeline network were modeled using Prosper. Eventually, MATLAB was used for connecting reservoir, wells and flow pipeline network to create an integrated model and allocate optimized lift gas rate between wells, by genetic algorithm. Injection gas was allocated among wells according to different scenarios. Moreover, oil production and cashflow from each scenario were compared. According to the results, using the integrated production model with the optimal control system in an artificial gas lift process improves cashflow by 224.86% over natural production condition in a hydrocarbon reservoir. Finally, although considering instability as a constraint in an optimal control system of integrated production model reduces cashflow by 2.93%, it will reduce the damage to the downstream facility in the long-term.
 

کلیدواژه‌ها [English]

  • Artificial Gas Lift
  • Integrated Production Modeling
  • Instability
  • Optimal Control
  • Cashflow

[1]. Pedersen, Pål Jåtun. “ArtifIcial water lift at statfjord,” Trondheim, June 2007. ##

[2]. Abdalsadig M. A., Amir Nourian G. G. Nasr and Babaie M., “Gas lift optimization to improve well performance,” International journal of mechanical, aerospace, industrial, mechatronic and manufacturing engineering 10, No. 3, pp. 427-435, 2016. ##

[3]. Lea James F. and Henry V. Nickens, “Selection of artificial lift,” In SPE Mid-Continent Operations Symposium. Society of Petroleum Engineers, 1999. ##

[4]. Hu B. and Golan M., “Gas-lift instability resulted production loss and its remedy by feedback control: dynamical simulation results,” In SPE International Improved Oil Recovery Conference in Asia Pacific. Society of Petroleum Engineers, 2003. ##

[5]. Guerrero Sarabia I. and Fairuzov Y. V., “Linear and non-linear analysis of flow instability in gas-lift wells,” Journal of Petroleum Science and Engineering, Vol. 108, pp. 162-171, 2013. ##

[6]. Mahdiani M. R. and Khamehchi E., “Stabilizing gas lift optimization with different amounts of available lift gas,” Journal of Natural Gas Science and Engineering, Vol. 26, pp. 18-27, 2015. ##

[7]. Olav S., Hole H. and Bjune B., “Active slug management,” In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006. ##

[8]. Ghassemzadeh Sh. and Hashempour Charkhi A., “Optimization of integrated production system using advanced proxy based models: A new approach,” Journal of Natural Gas Science and Engineering 35, pp. 89-96, 2016. ##

[9]. Awan E., Aboaja U. and Ajayi A., “Integrated production System Modeling (IPSM) as an opportunity Realization and optimization tool for improved asset management,” In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2013. ##

[10]. Gilbert W. E. “Flowing and gas-lift well performance,” In Drilling and production practice. American Petroleum Institute, 1954.

[11]. Hagedorn Alton R. and Brown K. E.. “Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits,” Journal of Petroleum Technology, Vol. 17, No. 04, pp. 475-484, 1965. ##

[12]. Asheim H., “Criteria for gas-lift stability,” Journal of Petroleum Technology, Vol. 40, No. 11, pp. 1-452, 1988. ##

[13]. Hepguler G., Barua S. and Bard W., “Integration of a field surface and production network with a reservoir simulator,” SPE Computer Applications, Vol. 9, No. 03, pp. 88-92, 1997. ##

[14]. Jansen B., Dalsmo M., Nøkleberg L., Havre K., Kristiansen V. and Lemetayer P., “Automatic control of unstable gas lifted wells,” In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1999. ##

[15]. Poblano E., R. Camacho and Fairuzov Y. V., “Stability analysis of continuous-flow gas-lift wells,” In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2002. ##

[16]. Dalsmo M., Halvorsen E. and Slupphaug O., “Active feedback control of unstable wells at the brage field,” Society of Petroleum Engineers, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 29 September-2 October, 2005. ##

[17]. Gutierrez F., Hallquist A. A. E., Shippen M. E. and Kashif R., “A new approach to gas lift optimization using an integrated asset model,” In International Petroleum Technology Conference. International Petroleum Technology Conference, 2007. ##

[18]. Khamehchi E., Rashidi F., Omranpour H., Shiry Ghidary S., Ebrahimian A. and Rasouli H., “Intelligent system for continuous gas lift operation and design with unlimited gas supply,” Journal of Applied Sciences, Vol. 9, No. 10, pp. 1889-1897, 2009. ##

[19]. Maijoni A. and Hamouda A. A., “Effect of gas lift gas composition on production stability/instability by dynamic and steady state simulation for continues gas lift injection mode,” In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2011. ##

[20]. Mahmudi M. and Sadeghi M. T., “The optimization of continuous gas lift process using an integrated compositional model,” Journal of Petroleum Science and Engineering, Vol. 108, pp. 321-327, 2013. ##

[21]. Mirzaei Paiaman A. “An empirical correlation governing gas-condensate flow through chokes,” Petroleum Science and Technology, Vol. 31, No. 4, pp. 368-379, 2013. ##

[22]. Mirzaei Paiaman A., and Salavati S., “A new empirical correlation for sonic simultaneous flow of oil and gas through wellhead chokes for Persian oil fields,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35, No. 9, pp. 817-825, 2013. ##

[23]. Khamehchi E., Abdolhosseini H. and Abbaspour R., “Prediction of maximum oil production by gas lift in an Iranian field using auto-designed neural network,” History, Vol. 138, pp. 150, 2014. ##

[24]. Rasouli H., Rashidi F., Karimi B. and Khamehchi E., “A surrogate integrated production modeling approach to long-term gas-lift allocation optimization,” Chemical Engineering Communications, Vol. 202, No. 5, pp. 647-654, 2015. ##

[25]. Ghassemzadeh Sh. and Pourafshary P., “Development of an intelligent economic model to optimize the initiation time of gas lift operation,” Journal of Petroleum Exploration and Production Technology, Vol. 5, No. 3, pp. 315-320, 2015. ##

[26]. Shao W., Boiko I. and Al-Durra A., “Control-oriented modeling of gas-lift system and analysis of casing-heading instability,” Journal of Natural Gas Science and Engineering, Vol. 29, pp. 365-381, 2016. ##

[27]. Shi J., Al Durra A. and Boiko I., “Optimal tracking control of artificial gas-lift process,” Computers & Chemical Engineering, Vol. 117, pp. 1-10, 2018. ##

[28]. Diehl Fabio C., Cristina S., Almeida, Thiago K. Anzai, Giovani Gerevini, Saul S. Neto, Oscar F. Von Meien, Mario CMM Campos, Marcelo F. and Jorge Trierweiler O., “Oil production increase in unstable gas lift systems through nonlinear model predictive control,” Journal of Process Control, Vol. 69, pp. 58-69, 2018. ##

[29]. de Sousa Santos, Lizandro, Kaio Magno Ferreira de Souza, Marina Ribeiro Bandeira, Víctor Rolando Ruiz Ahón, Fernando Cunha Peixoto, and Diego Martinez Prata. “Dynamic optimization of a continuous gas lift process using a mesh refining sequential method,” Journal of Petroleum Science and Engineering, Vol. 165, pp. 161-170, 2018. ##