اصلاح خواص جداسازی و ساختاری غشای نانوفیلتراسیون بر پایه پلی‌اتر‌سولفون با استفاده از نانوذرات سولفونه‌شده اکسید‌سیلیس

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه اراک، ایران

چکیده

در این پژوهش، غشاهای نانوکامپوزیتی بر پایه پلی‌اتر‌سولفون و با استفاده از نانوذرات سولفونه‌شده اکسید‌سیلیس (SiO2-SO3H) به‌کمک روش تغییر فاز ساخته شد. از پلیمر پلی‌وینیل پیرولیدن به‌عنوان حفره ساز و از دی‌متیل‌استآمید به‌عنوان حلال، در ساخت محلول پلیمری استفاده شد. اثر غلظت‌های مختلف نانوذرات در محلول پلیمری بر عملکرد جداسازی غشاها مورد ارزیابی قرار گرفت. جهت ارزیابی ساختار غشاها از عکس‌برداری الکترونی میکروسکوپی و میکروسکوپ نوری استفاده شد. نتایج به‌دست آمده نشان داد با افزایش نانو‌ذره سیلیکای سولفونه‌شده میزان بهبود قابل توجهی در میزان شار عبوری و پس‌دهی غشاهای اصلاح شده حاصل گردید و مقاومت مکانیکی غشاهای اصلاح شده بین 15 تا 25% نیز افزایش یافت. عملکرد بهینه برای غشا حاوی 1/0% نانو ذره با افزایش شار 200% نسبت به غشای اصلاح نشده و میزان پس‌دهی 70% به‌دست آمد. همچنین نسبت کاهش شار این نمونه که بیانگر خاصیت ضدگرفتگی آن است حدود 14/7 بود که در مقایسه با نمونه فاقد نانو ذره 75% کاهش داشته است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modification the Separation and Structural Properties of PES Based Nanofiltration Membrane Using Sulfonated Silicon Dioxide Nanoparticles

نویسندگان [English]

  • Abdolreza Moghadassi
  • Mahboubeh Ahmarinejad
  • Fahime Parvizian
  • Sayed Mohsen Hosseini
  • Ehsan Bagheripour
Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
چکیده [English]

In this study, nanocomposite PES based membranes were prepared by using sulfonated silicon dioxide (SiO2-SO3H) nanoparticles through phase inversion method. PVP and N-N-dimethylacetamide were used as pore former and solvent respectively. The effect of nanoparticles’ concentration on the separation performance of prepared membranes was studied. The structures of membranes were investigated by scanning electron microscopy (SEM) and scanning optical microscopy (SOM). Obtained results showed modified membranes had significant improvements in flux and rejection with increasing sulfonated silicon dioxide nanoparticles. Also, the tensile strength increased in the range of 15 to 25% for prepared membranes containing naniparticles.  Results showed that nanocomposite membrane containing 0.1 wt.% SiO2-SO3H nanoparticles has an increase in the flux of 200% compared to the unmodified membrane and salt rejection of 75%. Also, the flux decreased the ratio of the optimum sample was 7.14 that showed better antifouling properties with decreasing of 75% relative to the PES one.
 

کلیدواژه‌ها [English]

  • Membrane
  • Nanofiltration
  • Polyether Sulfone
  • Sulfonated Silicon Dioxide Nanoparticles
  • Desalination
[1]. Jin L., Shi W., Yu S., Yi X., Sun N., Ma C. and Liu Y., “Preparation and characterization of a novel PA-SiO2 nanofiltration membrane for raw water treatment,” Desalination, Vol. 298, pp. 34–41, 2012.##
[2]. Bagheripour E., Moghadassi A. R. and Hosseini S. M., “Novel nanofiltration membrane with low concentration of polyvinylchloride: Investigation of solvents’ mixing ratio effect (Dimethyl acetamide/Tetrahydrofuran),” Arabian J. Chem., Vol. 10, pp. S3375-S3380, 2017. ##
[3]. Saleh T. A. and Gupta V. K., “Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance,” Sep. Purif. Technol., Vol. 89, pp. 245–251, 2012. ##
[4]. Saljoughi E., Amirilargani M. and Mohammadi T., “Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes,” Desalination, Vol. 262, pp. 72–78, 2010. ##
[5]. Mansourpanah Y., Madaeni S. S., Rahimpour A., Adeli M., Hashemi M. Y. and Moradian M. R., “Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: Property changes and morphological studies,” Desalination, Vol. 277, pp. 171–177, 2011.##
[6]. Hedge C., Isloor A. M., Padaki M. and Fun H. K., “Synthesis and performance characterization of PS-PPEES nanoporous membrane with nonwoven porous support”, Arabian J. Chem, Vol. 6, pp. 319-326, 2013. ##
[7]. Zhu J., Tian M., Zhang Y., Zhang H. and Liu J., “Fabrication of a novel ‘‘loose’’ nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification,” Chem. Eng. J., Vol. 265, pp. 184–193, 2015. ##
[8]. Liu T. Y., Bian L. X., Yuan H. G., Pang B., Lin Y. K., Tong Y., VanderBruggen B. and Wang X. L., “Fabricationofahigh-flux thin film compositehollow fiber nanofiltration membrane  for wastewater treatment,” J. Membr. Sci., Vol. 478, pp. 25–36, 2015. ##
[9]. Boricha A. G. and Murthy Z. V. P., “Preparation of N,O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater,” Chem. Eng. J., Vol. 157, pp. 393– 400, 2010.##
[10]. Mobarakabad P., Moghadassi A. R. and Hosseini S. M., “Fabrication and characterization of poly(phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination,” Desalination, Vol. 365, pp. 227–233, 2015.##
[11]. Ghaemi N., Madaeni S. S., Alizadeh A., Daraei P., Zinatizadeh A. A. and Rahimpour Fa., “Separation of nitrophenols using cellulose acetate nanofiltration membrane: Influence of surfactant additives”, Sep. Purif. Technol., Vol. 85, pp. 147–156, 2012. ##
[12]. Jin L. M., Yu S. L., Shi W. X., Yi X. S., Sun N., Ge Y. L. and Ma C., “Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination,” Polymer, Vol. 53, pp. 5295-5303, 2012.##
[13]. Daraei P., Madaeni S. S., Ghaemi N., Monfared H. A. and Khadivi M. A., “Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: Comparison of MWCNT and PAA modified MWCNT,” Sep. Purif. Technol., Vol. 104, pp. 32– 44, 2013. ##
[14]. Zhao C., Xue J., Ran F. and Sun S., “Modification of polyethersulfone membranes – A review of methods,” Prog. Mater. Sci., Vol. 58, pp. 76– 150, 2013. ##
[15]. Sivasankaran A., Sangeetha D., “Influence of sulfonated SiO2 in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell,” Fuel, Vol. 159, pp. 689–696, 2015. ##
[16]. Jin L. M., Yu S. L., Shi W. X., Yi X. S., Sun N., Ge Y. L. and Ma C., “Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination,” Polymer, Vol. 53, pp.  5295-5303, 2012. ##
[17]. Liu C., Lee J., Small C., Ma J. and Elimelech M., “Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes,” J. Membr. Sci., Vol. 544, pp. 135-142, 2017. ##
[18]. Zargar M., Hartanto Y., Jin B. and Dai S., “Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes,” J. Membr. Sci., Vol. 541, pp. 19-28, 2017. ##
[19]. Jullok N., Hooghten R. V., Luis P., Volodin A., Haesendonck C. V., Vermant J. and Van der Bruggen B., “Effect of silica nanoparticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: plant-inspired dewatering systems,” J. Clean. Prod., Vol. 112, pp.  4879-4889, 2016. ##
[20]. Su Y. H., Liu Y. L., Sun Y. M., Lai J.Y., Wang D. M., Gao Y., Liu B. and Guiver M. D., “Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells,” J. Membr. Sci., Vol. 296, pp. 21–28, 2007. ##
[21]. Suryani A. and Liu Y. L., “Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes,” J. Membr. Sci., Vol. 332, pp. 121–128, 2009. ##
[22]. Li X., Wang Z., Lu H., Zhao C., Na H. and Zhao C., “Electrochemical properties of sulfonatedPEEK used for ion exchange membranes,” J. Membr. Sci. Vol. 254, pp. 147–155, 2005. ##
[23]. Hosseini S. M., Madaeni S. S. and Khodabakhshi A. R., “Heterogeneous cation exchange membrane: preparation, characterization and comparison of transport properties of mono and bivalent cations,” Sep. Sci. Technol., Vol. 45, pp. 2308–2321, 2010. ##
[24]. Van der Bruggen B., “Chemical modification of polyethersulfonenanofiltration membranes: A review,” J. Appl. Polym. Sci., Vol. 114, pp. 630–642, 2009. ##
[25]. Mandal M. K., Dutta S. and Bhattacharya P. K., “Characterization of Blended Polymeric Membranes for Pervaporation of Hydrazine Hydrate,” Chem. Eng. J., Vol. 138, pp. 10-19, 2008.##
[26]. Shen l., Bian X., Lu X., Shi L., Liu Z., Chen L., Hou Z. and Fan K., “preparation and characterizationof ZnO/polyethersulfone (PES) hybrid membranes,” Desalination, Vol. 293, pp. 21–29, 2012.##
[27]. Bagheripour E., Moghadassi A. R., Hosseini S. M. and Ansari S., “Fabrication of polyvinylchloride based nano filtration membrane filled with SiO2 nanoparticles: Performance and physico-chemical characterization,” Chem. Xpress., Vol. 9, pp. 011-019, 2016. ##
[28] Oueiny C., Berlioz S. and Perrin F. X., “Carbon nanotube-polyaniline composite, Prog. Polym. Sci., Vol. 39, pp. 707–748, 2014.
[29]. Madaeni S. S. and Pourghorbani R., “Preparation of PVDF/PES Blend Membranes for Cold Sterilization of Water and Milk,” Advanc. Polym. Technol., Vol. 32, pp. E141–E152, 2013. ##
[30]. Bagheripour E., Moghadassi A. R. and Hosseini S. M., “Fabrication of polyvinyl chloride based nanocomposite nanofiltration membrane: investigation of SDS/Al2O3 nanoparticle concentration and solvent ratio effects,” Asia Pacif. J. Chem. Eng., Vol. 10, pp. 791–798, 2015. ##
[31]. Liao C. J., Zhao J. Q., Yu P., Tong H. and Luo Y. B., “Synthesis and characterization of SBA-15/poly (vinylidene fluoride) (PVDF) hybrid membrane,” Desalination, Vol. 260, pp. 147–152, 2010.##
[32]. Hosseini S. M., Nemati M., Jeddi F., Salehi E., Khodabakhshi A. R. and Madaeni S. S., “Fabrication of mixed matrix heterogeneous cation exchange membranemodified by titanium dioxide nanoparticles: Mono/bivalent ionictransport property in desalination,” Desalination, Vol. 359, pp.  167–175, 2015. ##
[33]. Hosseini S. M., Madaeni S. S. and Khodabakhshi A. R., “The electrochemical characterization of ion exchange membranes in different electrolytic environments: investigation of concentration and pH effects,” Sep. Sci.Technol., Vol. 47, pp. 455– 462, 2012.##
[34]. Chang X., Wang Z., Quan S., Xu Y., Jiang Z. and Shao L., “Exploring the synergetic effects of graphene oxide (GO) andpolyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance,” Appl. Surf. Sci., Vol. 316, pp. 537– 548, 2014. ##
[35]. Hosseini S. M., Madaeni S. S. and Khodabakhshi A. R., “Preparation and characterization of ABS/HIPS heterogeneous anion exchange membrane filled with activated carbon,” J. Appl.Polym. Sci., Vol. 118, pp. 3371–3383, 2010. ##
[36]. Hosseini S. M., Koranian P., Gholami A., Madaeni S. S., Moghadassi A. R., Sakinejad P. and Khodabakhshi A. R., “Fabrication of mixed matrix heterogeneous ion exchange membrane by multiwalled carbon nanotubes: Electrochemical characterization and transport properties of mono and bivalent cations,” Desalination, Vol. 329, pp. 62-67,  2013.##