بهینه‌سازی چندهدفه با تلفیق روش‌های طراحی آزمایش، الگوریتم ازدحام ذرات و منطق فازی: مطالعه موردی برای ازدیاد برداشت به کمک تزریق پلیمر

نوع مقاله: مقاله پژوهشی

نویسنده

پژوهشکده‌ ازدیاد برداشت از مخازن نفت و گاز، تهران، ایران

چکیده

روش‌های بهینه‌سازی که در آنها تنها به یک معیار توجه ‌شود نمی‌توانند راه‌حل جامعی را برای مسئله ارائه نمایند زیرا نمی‌توانند تهاتر بین اهداف مختلف فنی و اقتصادی را که معمولاً با یکدیگر در تضادند، در نظر بگیرند. در این پژوهش، یک الگوریتم بهینه‌سازی چندهدفه با تلفیق روش‌های طراحی آزمایش، بهینه‌سازی ازدحام ذرات و منطق فازی توسعه داده‌شد که می‌تواند مسائل‌ بهینه‌سازی چندمنظوره را با درنظرگرفتن هم‌زمان اهداف مختلف حل نماید. توانمندی این الگوریتم، در یک مطالعه‌ موردی تزریق پلیمر ارزیابی شد که در آن متغیرهای موثر (طول دوره‌ سیلاب‌زنی، غلظت پلیمر طول دوره‌ تزریق پلیمر و جذب پلیمر) بر عملیات ازدیاد برداشت تزریق پلیمر به یک مخزن ماسه‌سنگی با در نظر گرفتن هم‌زمان معیارهای فنی (تولید تجمعی نفت) و اقتصادی (ارزش فعلی خالص) بهینه‌سازی شدند. نتایج بهینه‌سازی این الگوریتم چندمعیاره با نتایج یک سناریوی پایه و همچنین یک روش بهینه‌سازی تک‌هدفه (الگوریتم ازدحام ذرات) مقایسه شد. در مقایسه با سناریوی پایه، تولید تجمعی نفت بیش از 58% و ارزش فعلی خالص از 9/6 به 1/13 میلیون دلار افزایش یافتند. تولید تجمعی نفت بهینه در الگوریتم تک‌هدفه‌‌ مبتنی بر معیار فنی، نسبت به الگوریتم دوهدفه چندهزار بشکه افزایش پیدا کرد ولی از طرف دیگر شاخص اقتصادی آن شدیداً دچار افت گردید (کاهش ارزش فعلی خالص از 1/13 به 5/11 میلیون دلار). نتایج این پژوهش نشان می‌دهد، به‌کارگیری الگوریتم‌های بهینه‌سازی چندمعیاره منجر به تصمیم‌گیری دقیق‌تر و واقع‌بینانه‌تر برای پیاده‌سازی عملیات خواهد شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-objective Optimization using Integration of Experimental Design Methods, Particle Swarm Optimization, and Fuzzy Logic, Case Study: Polymer Injection for Enhanced Oil Recovery

نویسنده [English]

  • Mohammadsaber Karambeigi
IOR Research Institute, National Iranian Oil Company (NIOC), Tehran, Iran
چکیده [English]

Single-criterion techniques in which just a single objective is considered cannot offer the perfect solution because they cannot take into account the trade-off between conflicting technical and economic conditions. In this study, a multi-criteria algorithm was developed based on experimental design methods, particle swarm optimization, and fuzzy logic. It was able to solve the optimization problem via considering different objectives simultaneously, finding the optimum values of effective factors. To evaluate the efficiency of the workflow, a case study was done in which influential parameters (water flooding duration, polymer concentration, duration of polymer injection, and polymer adsorption) for the design of an enhanced oil recovery operation of polymer flooding in a sandstone reservoir were optimized considering technical (cumulative oil production) and economic (net present value) objectives. The results were compared to the results of the base-case scenario as well as a single objective algorithm (particle swarm optimization). Compared to the base-case scenario, cumulative oil production increased more than 58% and net present value rised from $ 6.9 to 13.1 MM as well. Although the optimum scenario proposed by single-criterion optimization algorithm based on technical objective produced more oil compared to the best solution of the multi-purpose algorithm, a severe reduction was observed in the economic objective simultaneously. Finally, the results of this study demonstrate that multi-objective algorithms are more applicable to precise and realistic decision-making.
 

کلیدواژه‌ها [English]

  • Polymer Flooding
  • Multi-objective Optimization
  • Particle Swarm Optimization
  • Fuzzy Logic
  • Chemical Enhanced Oil Recovery

[1]. Muggeridge A., Cockin A., Webb K., Frampton H., Collins I., Moulds T. and Salino P., “Recovery rates, enhanced oil recovery and technological limits,” Philosophical Transactions, Series A, Mathematical, Physical, and Engineering Sciences, pp. 372, pp.1-25, 2014.##

[2]. حقگو م.و جعفری آ.، "بررسی آزمایشگاهی تاثیر پارامترهای شکاف بربازده جاروب نفت حین تزریق نانوسیال"، پژوهش نفت، شماره 3-96 ، صفحات 164-150، 1396.##

[3]. Lake L. W., Johns R., Rossen B. and Pope G., “Fundamentals of enhanced oil recovery,” ed., Society of Petroleum Engineers, p. 496, 2014.##

[4]. Sheng J. J., Leonhardt B. and Azri N., “Status of polymer-flooding technology,” Journal of Canadian Petroleum Technology, Vol. 54, pp. 116-126, 2015.##

[5]. Seright R. S., “Potential for polymer flooding reservoirs with viscous oils,” SPE Reservoir Evaluation and Engineering, Vol. 13, pp. 730-740, 2010.##

[6]. Stoll W. M., Al Shureqi H., Finol J., Al-Harthy S. A. A., Oyemade S., De Kruijf A., Van Wunnik J., Arkesteijn F., Bouwmeester R. and Faber M. J., “Alkaline/surfactant/polymer flood: From the laboratory to the field,” SPE Reservoir Evaluation and Engineering, Vol. 14, pp. 702-712, 2011.##

[7]. Wu X., Song S., Xiong C., Guo Z., Xu H., Jiang P., Zhang J., Zhang Y., Chen J., Tian X. and Shao L., “A New polymer flooding technology for improving heavy oil reservoir recovery-from lab study to field application- case study of high temperature heavy oil field Z70,” SPE Paper 174511, Presented at SPE Canada Heavy Oil Technical Conference, June 9-11, Calgary, Alberta, Canada, 2015.##

[8]. AlSofi A. M. and Blunt M. J., “Polymer flooding design and optimization under economic uncertainty,” Journal of Petroleum Science and Engineering, Vol. 124, pp. 46-59, 2014.##

[9]. Anderson G. A., Delshad M., King C. B., Mohammadi H. and Pope G. A., “Optimization of chemical flooding in a mixed-wet dolomite reservoir,” SPE Paper 100082, Presented at SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 22-26, 2006.##

[10]. Zerpa L. E., Queipo N. V., Pintos S. and Salager J. L., “An optimization methodology of alkaline-surfactant-polymer flooding processes using field scale numerical simulation and multiple surrogates,” Journal of Petroleum Science and Engineering, Vol. 47, pp. 197-208, 2005.##

[11]. Prasanphanich J., Kalaei M. H., Delshad M. and Sepehrnoori K., “Chemical flooding optimisation using the experimental design approach and response surface methodology,” International Journal of Oil, Gas and Coal Technology, Vol. 5, pp. 368-384, 2012.##

[12]. Ekkawong P., Han J., Olalotiti-Lawal F. and Datta-Gupta A., “Multiobjective design and optimization of polymer flood performance,” Journal of Petroleum Science and Engineering, Vol. 153, pp. 47-58, 2017.##

[13]. Reddy M. J. and Kumar D. N., “An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design,” Engineering Optimization, Vol. 39, pp. 49-68, 2007.##

[14]. Kennedy J. and Eberhart R., “Particle swarm optimization," Presented at IEEE International Conference on Neural Networks, Perth, Australia, November 27-December 1,1995.##

[15] کسروی ج.، صفرزاده م. و ولی‌زاده ا.، "استفاده از الگوریتم ازدحام ذرات به‌همراه کنترل‌گر تناسبی در فرآیند بهینه‌سازی مسیر حفاری چاه- مطالعه موردی"، پژوهش نفت، شماره 5-95، صفحات 140-129، 1395.##

[16]. Isebor O. J. and Durlofsky L. J., “Biobjective optimization for general oil field development,” Journal of Petroleum Science and Engineering, Vol. 119, pp. 123-138, 2014.##

[17]. Sangvaree T., “Chemical flooding optimization using the experimental design and response surface method,” M.Sc. Dissertation, Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, 2008.##

[18]. UTCHEM-9.0، “Volume I: User's guide,” Center for Petroleum and Geoscience Engineering,The University of Texas at Austin, p. 151, 2000.##

[19]. Jeirani Z., Mohamed Jan B., Si Ali B., Mohd Noor I., See C.H. and Saphanuchart W., “Prediction of water and oil percolation thresholds of a microemulsion by modeling of dynamic viscosity using response surface methodology,” Journal of Industrial and Engineering Chemistry, Vol. 19, pp. 554-560, 2013.##

[20]. Van den Bergh F. and Engelbrecht A. P., “A study of particle swarm optimization particle trajectories,” Information Sciences, Vol. 176, pp. 937-971, 2006.##

[21]. Ahmadi M. H., Ahmadi M. A. and Feidt M., “Performance optimization of a solar-driven multi-step irreversible Brayton cycle based on a multi-objective genetic algorithm,” Oil and Gas Science and Technology, Vol. 71, No. 1, p. 14, 2016.##

[22]. Shah A., Fishwick R., Wood J., Leeke G., Rigby S. and Greaves M., “A review of novel techniques for heavy oil and bitumen extraction and upgrading,” Energy & Environmental Science, Vol. 3, pp. 700-714, 2010.##