[1]. Bleken F. L., Chavan S., Olsbye U., Boltz M., Ocampo F. and Louis B., “Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity,” Applied Catalysis A: General, Vol. 447, pp.178-185, 2012.##
[2]. Xu T., Zhang Q., Song H. and Wang Y., “Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides,” Journal of Catalysis, Vol. 295, pp. 232-241, 2012.##
[3]. Zhang L., Song Y., Li G., Zhang Q., Zhang S., Xu J., Deng F. and Gong Y., “F-assisted synthesis of a hierarchical ZSM-5 zeolite for methanol to propylene reaction: ab-oriented thinner dimensional morphology,” RSC Advances, Vol. 5(75), pp. 61354-61363, 2015.##
[4]. Ivanova S., Lebrun C., Vanhaecke E., Pham-Huu C. and Louis B., “Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction,” Journal of Catalysis, Vol. 265(1), pp. 1-7, 2009.##
[5]. Houdek J. M. and Andersen J., “On-purpose propylene-technology developments,” In UOP LLC, Presented at the ARTC 8th Annual Meeting, 2005, April.##
[6]. Guenther D. R., “Investigation of the hydrocarbon pool species responsible for methanol to olefin catalysis on acidic zeolite and zeotype catalysts,” Doctoral Dissertation, University of Southern California, 2010.##
[7]. Yaripour F., Shariatinia Z., Sahebdelfar S. and Irandoukht A., “Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction,” Microporous and Mesoporous Materials, Vol. 203, pp. 41-53, 2015.##
[8]. Ke J. A. and Wang I., “Elucidation of the role of potassium fluoride in the chemical and physical nature of ZSM-5 zeolite,” Materials Chemistry and Physics, Vol. 68(1), pp.157-165, 2001.##
[9]. Louis B. and Kiwi-Minsker L., “Synthesis of ZSM-5 zeolite in fluoride media: an innovative approach to tailor both crystal size and acidity,” Microporous and Mesoporous Materials, 74(1), pp. 171-178, 2004.##
[10]. Arichi J. and Louis B., “Toward microscopic design of zeolite crystals: advantages of the fluoride-mediated synthesis,” Crystal Growth and Design, Vol. 8(11), pp.3999-4005, 2008.##
[11]. Belarbi H., Lounis Z., Hamacha R., Bengueddach A. and Trens P., “Textural properties of ZSM-5 nanocrystals prepared in alkaline potassium fluoride medium,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 453, pp. 86-93, 2014.##
[12]. Nigro E., Mostowicz R., Crea F., Testa F., Aiello R. and Nagy J. B., “Synthesis and characterization of ZSM-5 in fluoride medium: the role of NH4+ and K+ cations,” Studies in Surface Science and Catalysis, Vol. 105, pp.309-316, 1997.##
[13]. Qin Z., Gilson J. P. and Valtchev V., “Mesoporous zeolites by fluoride etching,” Current Opinion in Chemical Engineering, Vol. 8, pp.1-6, 2015.##
[14]. Li J., Liu M., Guo X., Dai C. and Song C., “Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene,” Journal of Energy Chemistry, 2017.##
[15]. Aiello R., Crea F., Nigro E., Testa F., Mostowicz R., Fonseca A. and Nagy J. B., “The influence of alkali cations on the synthesis of ZSM-5 in fluoride medium,” Microporous and Mesoporous Materials, Vol. 28(2), pp. 241-259, 1999.##
[16]. Liu C., Gu W., Kong D. and Guo H., “The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology,” Microporous and Mesoporous Materials, Vol. 183, pp. 30-36, 2014.##
[17]. Losch P., Pinar A. B., Willinger M. G., Soukup K., Chavan S., Vincent B., Pale P. and Louis B., “H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis,” Journal of Catalysis, 345, pp. 11-23, 2017.##
[18]. Leofanti G., Padovan M., Tozzola G. and Venturelli B., “Surface area and pore texture of catalysts,” Catalysis Today, Vol. 41(1), pp. 207-219, 1998.##
[19]. Yang Y., Sun C., Du J., Yue Y., Hua W., Zhang C., Shen W. and Xu H., “The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction,” Catalysis Communications, Vol. 24, pp.44-47, 2012.##
[20]. Ahmadpour J. and Taghizadeh M., “Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide,” Comptes Rendus Chimie, Vol. 18(8), pp. 834-847, 2015.##
[21]. Rostamizadeh M. and Yaripour F., “Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 71, pp. 454-463, 2017.##
[22]. Tang Z., Zhang P., Han W., Lu G. and Lu J., “Butene catalytic cracking to ethylene and propylene on fluorinated ZSM-5-based catalyst,” Reaction Kinetics, Mechanisms and Catalysis, Vol. 108(1), pp. 231-239, 2013.##
[23]. Álvaro-Muñoz T., Márquez-Álvarez C. and Sastre E., “Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process,” Applied Catalysis A: General, Vol. 472, pp. 72-79, 2014.##
[24]. Svelle S., Joensen F., Nerlov J., Olsbye U., Lillerud K. P., Kolboe S. and Bjørgen M., “Conversion of methanol
into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes,” Journal of the American Chemical Society, Vol. 128(46), pp. 14770-14771, 2006.##
[25]. Bjørgen M., Svelle S., Joensen F., Nerlov J., Kolboe S., Bonino F., Palumbo L., Bordiga S. and Olsbye U., “Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species,” Journal of Catalysis, Vol. 249(2), pp. 195-207, 2007.##
[26]. Barnicki S. D., “Synthetic Organic Chemicals,” Handbook of Industrial Chemistry and Biotechnology, Springer, pp. 307-389, 2012##
[27]. Zimmermann H. and Walzl R., “Propene,” Ullmann›s Encyclopedia of Industrial Chemistry, 2013.##